Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)
Year of Publication
Document Types
1.  Group I aptazymes as genetic regulatory switches 
BMC Biotechnology  2002;2:21.
Allosteric ribozymes (aptazymes) that have extraordinary activation parameters have been generated in vitro by design and selection. For example, hammerhead and ligase ribozymes that are activated by small organic effectors and protein effectors have been selected from random sequence pools appended to extant ribozymes. Many ribozymes, especially self-splicing introns, are known control gene regulation or viral replication in vivo. We attempted to generate Group I self-splicing introns that were activated by a small organic effector, theophylline, and to show that such Group I aptazymes could mediate theophylline-dependent splicing in vivo.
By appending aptamers to the Group I self-splicing intron, we have generated a Group I aptazyme whose in vivo splicing is controlled by exogenously added small molecules. Substantial differences in gene regulation could be observed with compounds that differed by as little as a single methyl group. The effector-specificity of the Group I aptazyme could be rationally engineered for new effector molecules.
Group I aptazymes may find applications as genetic regulatory switches for generating conditional knockouts at the level of mRNA or for developing economically viable gene therapies.
PMCID: PMC139998  PMID: 12466025
2.  Estimating the number of integrations in transformed plants by quantitative real-time PCR 
BMC Biotechnology  2002;2:20.
When generating transformed plants, a first step in their characterization is to obtain, for each new line, an estimate of how many copies of the transgene have been integrated in the plant genome because this can deeply influence the level of transgene expression and the ease of stabilizing expression in following generations. This task is normally achieved by Southern analysis, a procedure that requires relatively large amounts of plant material and is both costly and labour-intensive. Moreover, in the presence of rearranged copies the estimates are not correct. New approaches to the problem could be of great help for plant biotechnologists.
By using a quantitative real-time PCR method that requires limited preliminary optimisation steps, we achieved statistically significant estimates of 1, 2 and 3 copies of a transgene in the primary transformants. Furthermore, by estimating the copy number of both the gene of interest and the selectable marker gene, we show that rearrangements of the T-DNA are not the exception, and probably happen more often than usually recognised.
We have developed a rapid and reliable method to estimate the number of integrated copies following genetic transformation. Unlike other similar procedures, this method is not dependent on identical amplification efficiency between the PCR systems used and does not need preliminary information on a calibrator. Its flexibility makes it appropriate in those situations where an accurate optimisation of all reaction components is impossible or impractical. Finally, the quality of the information produced is higher than what can be obtained by Southern blot analysis.
PMCID: PMC137580  PMID: 12398792
3.  Large scale sex typing of ostriches using DNA extracted from feathers 
BMC Biotechnology  2002;2:19.
Ostrich (Struthio camelus) breeds have been gaining increasing significance around the world. The large-scale sex determination of chicks is an important task in the development of these breeds. To date, two PCR-based methods have been established for ostrich sex typing, neither of them intended for large-scale analyses. Here, we report on a protocol adapted to carry out large-scale gender scoring using DNA obtained from chick feathers.
The DNA was extracted using a fast and simple alkaline extraction protocol that provided sufficient template for an early diagnosis. Tests with several primer sets enabled us to determine the best internal control primers associated with the sex-specific primers, avoiding spurious bands. Using DNA extracted from a single bulb and the best set of primers, we applied this protocol to simultaneously sex-type 96 individuals accurately.
We have established a fast, safe, accurate and inexpensive procedure for large-scale sex typing of ostriches using DNA extracted from feathers. This procedure is useful for the gender identification of chicks in the first days of nestling life.
PMCID: PMC130174  PMID: 12359044
4.  Genetic transformation of Vitis vinifera via organogenesis 
BMC Biotechnology  2002;2:18.
Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. The current methods for the production of transgenic grape plants are based on Agrobacterium-mediated transformation followed by regeneration from embryogenic callus. However, grape embryogenic calli are laborious to establish and the phenotype of the regenerated plants can be altered.
Transgenic grape plants (V. vinifera, table-grape cultivars Silcora and Thompson Seedless) were produced using a method based on regeneration via organogenesis. In vitro proliferating shoots were cultured in the presence of increasing concentrations of N6-benzyl adenine. The apical dome of the shoot was removed at each transplantation which, after three months, produced meristematic bulk tissue characterized by a strong capacity to differentiate adventitious shoots. Slices prepared from the meristematic bulk were used for Agrobacterium-mediated transformation of grape plants with the gene DefH9-iaaM. After rooting on kanamycin containing media and greenhouse acclimatization, transgenic plants were transferred to the field. At the end of the first year of field cultivation, DefH9-iaaM grape plants were phenotypically homogeneous and did not show any morphological alterations in vegetative growth. The expression of DefH9-iaaM gene was detected in transgenic flower buds of both cultivars.
The phenotypic homogeneity of the regenerated plants highlights the validity of this method for both propagation and genetic transformation of table grape cultivars. Expression of the DefH9-iaaM gene takes place in young flower buds of transgenic plants from both grape cultivars.
PMCID: PMC130035  PMID: 12354328
Vitis vinifera; meristem regeneration; genetic transformation; gene expression; DefH9-iaaM gene
5.  A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products 
BMC Biotechnology  2002;2:17.
The brine shrimp lethality assay is considered a useful tool for preliminary assessment of toxicity. It has also been suggested for screening pharmacological activities in plant extracts. However, we think that it is necessary to evaluate the suitability of the brine shrimp methods before they are used as a general bio-assay to test natural marine products for pharmacological activity.
Material and Methods
The bioactivity of the isopropanolic (2-PrOH) extracts of 14 species of marine invertebrates and 6 species of macroalgae was evaluated with the shrimp lethality assay (lethality assay), as well as with another assay based on the inhibition of hatching of the cyst (hatchability assay). The extracts were also assayed for cytotoxicity against two human cell lines, lung carcinoma A-549 and colon carcinoma HT-29, in order to assess the sensitivity of the shrimp assays to detect cytotoxic activity.
Two sponges (Hyatella sp, Dysidea sp.), two gorgonians (Pacifigorgia adamsii, Muricea sp.), one tunicate (Polyclinum laxum), and three echinoderms (Holothuria impatiens, Pseudoconus californica and Pharia pyramidata) showed a strong cytostatic (growth inhibition) and cytotoxic effect. The hatchability assay showed a strong activity in 4 of the species active against the two human cell lines tested (Hyatella sp, Dysidea sp., Pacifigorgia adamsii and Muricea sp.), and the lethality assay also showed a high lethality in 4 of them (Pacifigorgia adamsii, Muricea sp., Polyclinum laxum, and Pharia pyramidata). Each bioassay detected activity in 50% of the species that were considered active against the two human cell lines tested. However, the simultaneous use of both bioassays increased the percentage to 75%.
Our results seem consistent with the correlation previously established between cytotoxicity and brine shrimp lethality in plant extracts. We suggest using both bioassays simultaneously to test natural marine products for pharmacological activity.
PMCID: PMC130034  PMID: 12270067
6.  Construction and high cytoplasmic expression of a tumoricidal single-chain antibody against hepatocellular carcinoma 
BMC Biotechnology  2002;2:16.
Hep27 monoclonal (Hep27 Mab) is an antibody against hepatocellular carcinoma. Hep27 Mab itself can inhibit the growth of a hepatocellular carcinoma cell line (HCC-S102). We attempted to produce a single-chain fragment (scFv), a small fragment containing an antigen-binding site of Hep27 Mab, by using DNA-recombinant techniques.
The sequences encoding the variable regions of heavy (VH) and light (VL) chains of a murine Hep27 Mab were linked together by a linker peptide (Gly4Ser)3 and tagged with a hexa-histidine at the C-terminal; the resultant DNA construct was expressed in E. coli as an insoluble protein. The denatured scFv was refolded and purified by immobilized metal ion affinity chromatography (12 mg/l with a molecular weight of 27 kDa). Hep27scFv exhibited a tumoricidal activity against the HCC-S102 cell as its parental antibody (Hep27 Mab).
This scFv may be a potential candidate for a targeting agent in HCC immunodiagnosis or immunotherapy.
PMCID: PMC128817  PMID: 12227831
Single-chain Fv (scFv); Hepatocellular carcinoma (HCC); Bacterial expression; Inclusion body
7.  Retrovirus-delivered siRNA 
BMC Biotechnology  2002;2:15.
The ability of transfected synthetic small interfering (si) RNAs to suppress the expression of specific transcripts has proved a useful technique to probe gene function in mammalian cells. However, high production costs limit this technology's utility for many laboratories and experimental situations. Recently, several DNA-based plasmid vectors have been developed that direct transcription of small hairpin RNAs, which are processed into functional siRNAs by cellular enzymes. Although these vectors provide certain advantages over chemically synthesized siRNAs, numerous disadvantages remain including merely transient siRNA expression and low and variable transfection efficiency.
To overcome several limitations of plasmid-based siRNA, a retroviral siRNA delivery system was developed based on commerically available vectors. As a pilot study, a vector was designed to target the human Nuclear Dbf2-Related (NDR) kinase. Cells infected with the anti-NDR siRNA virus dramatically downregulate NDR expression, whereas control viruses have no effect on total NDR levels. To confirm and extend these findings, an additional virus was constructed to target a second gene, transcriptional coactivator p75.
The experiments presented here demonstrate that retroviruses are efficient vectors for delivery of siRNA into mammalian cells. Retrovirus-delivered siRNA provides significant advancement over previously available methods by providing efficient, uniform delivery and immediate selection of stable "knock-down" cells. This development should provide a method to rapidly assess gene function in established cell lines, primary cells, or animals.
PMCID: PMC126223  PMID: 12199908
8.  Quantitative assessment of the use of modified nucleoside triphosphates in expression profiling: differential effects on signal intensities and impacts on expression ratios 
BMC Biotechnology  2002;2:14.
The power of DNA microarrays derives from their ability to monitor the expression levels of many genes in parallel. One of the limitations of such powerful analytical tools is the inability to detect certain transcripts in the target sample because of artifacts caused by background noise or poor hybridization kinetics. The use of base-modified analogs of nucleoside triphosphates has been shown to increase complementary duplex stability in other applications, and here we attempted to enhance microarray hybridization signal across a wide range of sequences and expression levels by incorporating these nucleotides into labeled cRNA targets.
RNA samples containing 2-aminoadenosine showed increases in signal intensity for a majority of the sequences. These results were similar, and additive, to those seen with an increase in the hybridization time. In contrast, 5-methyluridine and 5-methylcytidine decreased signal intensities. Hybridization specificity, as assessed by mismatch controls, was dependent on both target sequence and extent of substitution with the modified nucleotide. Concurrent incorporation of modified and unmodified ATP in a 1:1 ratio resulted in significantly greater numbers of above-threshold ratio calls across tissues, while preserving ratio integrity and reproducibility.
Incorporation of 2-aminoadenosine triphosphate into cRNA targets is a promising method for increasing signal detection in microarrays. Furthermore, this approach can be optimized to minimize impact on yield of amplified material and to increase the number of expression changes that can be detected.
PMCID: PMC122072  PMID: 12150713
9.  Signal and noise in bridging PCR 
BMC Biotechnology  2002;2:13.
In a variant of the standard PCR reaction termed bridging, or jumping, PCR the primer-bound sequences are originally on separate template molecules. Bridging can occur if, and only if, the templates contain a region of sequence similarity. A 3' end of synthesis in one round of synthesis that terminates in this region of similarity can prime on the other. In principle, Bridging PCR (BPCR) can detect a subpopulation of one template that terminates synthesis in the region of sequence shared by the other template. This study considers the sensitivity and noise of BPCR as a quantitative assay for backbone interruptions. Bridging synthesis is also important to some methods for computing with DNA.
In this study, BPCR was tested over a 328 base pair segment of the E. coli lac operon and a signal to noise ratio (S/N) of approximately 10 was obtained under normal PCR conditions with Taq polymerase. With special precautions in the case of Taq or by using the Stoffel fragment the S/N was improved to 100, i.e. 1 part of cut input DNA yielded the same output as 100 parts of intact input DNA.
In the E. coli lac operator region studied here, depending on details of protocol, between 3 and 30% per kilobase of final PCR product resulted from bridging. Other systems are expected to differ in the proportion of product that is bridged consequent to PCR protocol and the sequence analyzed. In many cases physical bridging during PCR will have no informational consequence because the bridged templates are of identical sequence, but in a number of special cases bridging creates, or, destroys, information.
PMCID: PMC122071  PMID: 12126483
10.  Characterization of cationic lipid DNA transfection complexes differing in susceptability to serum inhibition 
BMC Biotechnology  2002;2:12.
Cationic lipid DNA complexes based on DOTAP (1,2-dioleoyl-3-(trimethyammonium) propane) and mixtures of DOTAP and cholesterol (DC) have been previously optimized for transfection efficiency in the absence of serum and used as a non-viral gene delivery system. To determine whether DOTAP and DC lipid DNA complexes could be obtained with increased transfection effciency in the presence of high serum concentrations, the composition of the complexes was varied systematically and a total of 162 different complexes were analyzed for transfection efficiency in the presence and absence of high serum concentrations.
Increasing the ratio of DOTAP or DC to DNA led to a dose dependent enhancement of transfection efficiency in the presence of high serum concentrations up to a ratio of approximately 128 nmol lipid/μg DNA. Transfection efficiency could be further increased for all ratios of DOTAP and DC to DNA by addition of the DNA condensing agent protamine sulfate (PS). For DOTAP DNA complexes with ratios of ≤ 32 nmol/μg DNA, peak transfection efficiencies were obtained with 4 μg PS/μg DNA. In contrast, increasing the amount of PS of DC complexes above 0.5 μg PS /μg DNA did not lead to significant further increases in transfection efficiency in the presence of high serum concentrations. Four complexes, which had a similar high transfection efficiency in cell culture in the presence of low serum concentrations but which differed largely in the lipid to DNA ratio and the amount of PS were selected for further analysis. Intravenous injection of the selected complexes led to 22-fold differences in transduction efficiency, which correlated with transfection efficiency in the presence of high serum concentrations. The complex with the highest transfection efficiency in vivo consisted of 64 nmol DC/ 16 μg PS/ μg DNA. Physical analysis revealed a predicted size of 440 nm and the highest zeta potential of the complexes analyzed.
Optimization of cationic lipid DNA complexes for transfection efficiency in the presence of high concentrations of serum led to the identification of a DC complex with high transduction efficiency in mice. This complex differs from previously described ones by higher lipid to DNA and PS to DNA ratios. The stability of this complex in the presence of high concentrations of serum and its high transduction efficiency in mice suggests that it is a promising candidate vehicle for in vivo gene delivery.
PMCID: PMC117600  PMID: 12113654
11.  Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal 
BMC Biotechnology  2002;2:11.
Non-invasive autofluorescent reporters have revolutionized lineage labeling in an array of different organisms. In recent years green fluorescent protein (GFP) from the bioluminescent jellyfish Aequoria Victoria has gained popularity in mouse transgenic and gene targeting regimes [1]. It offers several advantages over conventional gene-based reporters, such as lacZ and alkaline phosphatase, in that its visualization does not require a chromogenic substrate and can be realized in vivo. We have previously demonstrated the utility and developmental neutrality of enhanced green fluorescent protein (EGFP) in embryonic stem (ES) cells and mice [2].
In this study we have used embryonic stem (ES) cell-mediated transgenesis to test the enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP), two mutant and spectrally distinct color variants of wild type (wt) GFP. We have also tested DsRed1, the novel red fluorescent protein reporter recently cloned from the Discostoma coral by virtue of its homology to GFP. To this end, we have established lines of ES cells together with viable and fertile mice having widespread expression of either the ECFP or EYFP GFP-variant reporters. However, we were unable to generate equivalent DsRed1 lines, suggesting that DsRed1 is not developmentally neutral or that transgene expression cannot be sustained constitutively. Balanced (diploid <-> diploid) and polarized (tetraploid <-> diploid) chimeras comprising combinations of the ECFP and EYFP ES cells and/or embryos, demonstrate that populations of cells expressing each individual reporter can be distinguished within a single animal.
GFP variant reporters are unique in allowing non-invasive multi-spectral visualization in live samples. The ECFP and EYFP-expressing transgenic ES cells and mice that we have generated provide sources of cells and tissues for combinatorial, double-tagged recombination experiments, chimeras or transplantations.
PMCID: PMC116589  PMID: 12079497
12.  Low-volume jet injection for intradermal immunization in rabbits 
BMC Biotechnology  2002;2:10.
This study tested a low-volume (20–30 μl/20–30 μg DNA) jet injection method for intradermal delivery of a DNA vaccine. Jet injection offers the advantages of a needle-less system, low-cost, rapid preparation of the injected DNA solution, and a simple delivery system. More than one construct can be injected simultaneously and the method may be combined with adjuvants.
Low-volume jet injection targeted delivery of a DNA solution exclusively to the dermis and epidermis of rabbits. A three injection series of plasmid DNA, encoding the Hepatitis B Surface Antigen stimulated a humoral immune response in 2/5 rabbits. One rabbit developed a significant rise in antibody titer after 1 injection and one following 2 injections. There were no significant differences between jet injection and particle bombardment in the maximal antibody titers or number of injections before response. A three injection series of the same plasmid DNA by particle bombardment elicited a significant rise in antibody titer in 3/5 rabbits. One rabbit developed antibody after 1 injection and two after 3 injections. In contrast, 0/5 rabbits receiving DNA by needle and syringe injection responded. In the jet injection and particle bombardment groups, gene expression levels in the skin did not predict response. While immune responses were similar, luciferase gene expression levels in the skin following particle bombardment were 10–100 times higher than jet injection.
Low-volume jet injection is a simple, effective methodology for intradermal DNA immunization.
PMCID: PMC115865  PMID: 12028591
13.  Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. 
BMC Biotechnology  2002;2:9.
We investigated the encapsulation mechanism of enzymes into liposomes. The existing protocols to achieve high encapsulation efficiencies are basically optimized for chemically stable molecules. Enzymes, however, are fragile and encapsulation requires in addition the preservation of their functionality. Using acetylcholinesterase as a model, we found that most protocols lead to a rapid denaturation of the enzyme with loss in the functionality and therefore inappropriate for such an application. The most appropriate method is based on lipid film hydration but had a very low efficiency.
To improve it and to propose a standard procedure for enzyme encapsulation, we separate each step and we studied the effect of each parameter on encapsulation: lipid and buffer composition and effect of the different physical treatment as freeze-thaw cycle or liposomes extrusion. We found that by increasing the lipid concentration, increasing the number of freeze-thaw cycles and enhancing the interactions of the enzyme with the liposome lipid surface more than 40% of the initial total activity can be encapsulated.
We propose here an optimized procedure to encapsulate fragile enzymes into liposomes. Optimal encapsulation is achieved by induction of a specific interaction between the enzyme and the lipid surface.
PMCID: PMC113741  PMID: 12003642
14.  A new device for measurement of fibrin clot lysis: application to the Euglobulin Clot Lysis Time 
BMC Biotechnology  2002;2:8.
Determination of clot lysis times on whole blood, diluted whole blood, plasma or plasma fraction has been used for many years to assess the overall activity of the fibrinolytic system. We designed a completely computerised semi-automatic 8-channel device for measurement and determination of fibrin clot lysis. The lysis time is evaluated by a mathematical analysis of the lysis curve and the results are expressed in minute (range: 5 to 9999). We have used this new device for Euglobulin Clot Lysis Time (ECLT) determination, which is the most common test used in laboratories to estimate plasma fibrinolytic capacity.
The correlation between ECLT and manual method is very tight : R = 0,99; p < 10-6. The efficiency scores of the method are <4% in intra-assay and <7% in inter-assay. It allows to achieve the tests on hyperlipaemic samples. This new device has been easily integrated in laboratory routine and allows to achieve several ECLT every day without disturbance of laboratory workflow.
The routine use of this new device could be useful in various situations such as assessment in atherosclerosis and arteriosclerosis associated diseases, coagulation survey of liver transplantations, cardiovascular surgery or pharmacological research.
It has already provided highly promising results in preliminary studies on the relation between fibrinolysis and cardiovascular risk factors.
PMCID: PMC113256  PMID: 11985782
15.  Selective Permeation and Organic Extraction of Recombinant Green Fluorescent Protein (gfpuv) from Escherichia coli 
BMC Biotechnology  2002;2:7.
Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside), express the green fluorescent protein (gfpuv) during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP) method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells.
Material and Methods
Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1) of transformed (pGFP) Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm) were sonicated in successive intervals of sonication (25 vibrations/pulse) to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C) cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min) cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations). The intracellular permeate with gfpuv in extraction buffer (TE) solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF) was subjected to the three-phase partitioning (TPP) method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0).
The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA), after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA) was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP) method, in relation to total proteins, was higher, between 107.28 μg/mg and 135.10 μg/mg.
The selective permeation of gfpuv by freezing/thawing/sonication followed by TPP separation method was equivalent to the amount of gfpuv extracted from the cells directly by TPP; although selective permeation extracts showed better elution through the HIC column.
PMCID: PMC115201  PMID: 11972900
16.  Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. 
BMC Biotechnology  2002;2:5.
Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals.
The linker protein, a monoclonal antibody (mAb C), is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57) of transgenic pigs (F0 generation).
Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.
PMCID: PMC113740  PMID: 11964188
17.  Glycerol restores heat-induced p53-dependent apoptosis of human glioblastoma cells bearing mutant p53 
BMC Biotechnology  2002;2:6.
We have previously reported that glycerol acts as a chemical chaperone to restore the expression of WAF1 in some human cancer cell lines bearing mutant p53. Since the expression of WAF1 is up-regulated by activated wildtype p53, glycerol appears to restore wtp53 function. The aim of the present study is to examine the restoration of heat-induced p53-dependent apoptosis by glycerol in human glioblastoma cells (A-172) transfected with a vector carrying a mutant p53 gene (A-172/mp53 cells) or neo control vector (A-172/neo cells).
A-172/mp53 cells showed heat resistance compared with A-172/neo cells but A-172/mp53 cells in turn became heat sensitive when pre-treated with glycerol before heat treatment. The accumulation of Bax in the A-172/mp53 cells was induced by heating with glycerol pre-treatment, but not without it, whereas the accumulation in the A-172/neo cells was induced in both cases. Furthermore, mp53 extracted from heated cells came to bind to the sequence specific region after heating combined with glycerol pre-treatment. The phosphorylation of mp53 at serine15 was suppressed by an inhibitor of the phosphatidylinositol 3-kinase (PI3-K) family.
These results suggest that glycerol is effective in inducing conformational change of phosphorylated p53 and restoring mp53 to wtp53 function, leading to enhanced heat sensitivity through the induction of apoptosis. This novel tool for enhancement of heat sensitivity in cancer cells bearing mp53 may be applicable for p53-targeted hyperthermia, because mutation or inactivation of p53 is observed in approximately 50% of human cancers.
PMCID: PMC111188  PMID: 11965244
18.  Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation. 
BMC Biotechnology  2002;2:4.
Parthenocarpy, or fruit development in the absence of fertilization, has been genetically engineered in eggplant and in other horticultural species by using the DefH9-iaaM gene. The iaaM gene codes for tryptophan monoxygenase and confers auxin synthesis, while the DefH9 controlling regions drive expression of the gene specifically in the ovules and placenta. A previous greenhouse trial for winter production of genetically engineered (GM) parthenocarpic eggplants demonstrated a significant increase (an average of 33% increase) in fruit production concomitant with a reduction in cultivation costs.
GM parthenocarpic eggplants have been evaluated in three field trials. Two greenhouse spring trials have shown that these plants outyielded the corresponding untransformed genotypes, while a summer trial has shown that improved fruit productivity in GM eggplants can also be achieved in open field cultivation. Since the fruits were always seedless, the quality of GM eggplant fruits was improved as well. RT-PCR analysis demonstrated that the DefH9-iaaM gene is expressed during late stages of fruit development.
The DefH9-iaaM parthenocarpic gene is a biotechnological tool that enhances the agronomic value of all eggplant genotypes tested. The main advantages of DefH9-iaaM eggplants are: i) improved fruit productivity (at least 30–35%) under both greenhouse and open field cultivation; ii) production of good quality (marketable) fruits during different types of cultivation; iii) seedless fruit with improved quality. Such advantages have been achieved without the use of either male or female sterility genes.
PMCID: PMC101493  PMID: 11934354
19.  Rhodococcus erythropolis ATCC 25544 as a suitable source of cholesterol oxidase: cell-linked and extracellular enzyme synthesis, purification and concentration 
BMC Biotechnology  2002;2:3.
The suitability of the strain Rhodococcus erythropolis ATCC 25544 grown in a two-liter fermentor as a source of cholesterol oxidase has been investigated. The strain produces both cell-linked and extracellular cholesterol oxidase in a high amount, that can be extracted, purified and concentrated by using the detergent Triton X-114.
A spray-dry method of preparation of the enzyme inducer cholesterol in Tween 20 was found to be superior in both convenience and enzyme synthesis yield to one of heat-mixing. Both were similar as far as biomass yield is concerned. Cell-linked cholesterol oxidase was extracted with Triton X-114, and this detergent was also used for purification and concentration, following temperature-induced detergent phase separation. Triton X-114 was utilized to purify and to concentrate the cell-linked and the extracellular enzyme. Cholesterol oxidase was found mainly in the resulting detergent-rich phase. When Triton X-114 concentration was set to 6% w/v the extracellular, but not the cell-extracted enzyme, underwent a 3.4-fold activation after the phase separation process. This result is interpreted in the light of interconvertible forms of the enzyme that do not seem to be in equilibrium. Fermentation yielded 360 U/ml (672 U/ml after activation), 36% of which was extracellular (65% after activation). The Triton X-114 phase separation step yielded 11.6-fold purification and 20.3-fold concentration.
The results of this work may make attractive and cost-effective the implementation of this bacterial strain and this detergent in a purification-based industrial production scheme of commercial cholesterol oxidase.
PMCID: PMC101390  PMID: 11914155
Cholesterol oxidase; Rhodococcus erythropolis ATCC 25544; enzyme purification; Triton X-114; phase separation
20.  Expression of a crown gall biological control phenotype in an avirulent strain of Agrobacterium vitis by addition of the trifolitoxin production and resistance genes 
BMC Biotechnology  2002;2:2.
Agrobacterium vitis is a causal agent of crown-gall disease. Trifolitoxin (TFX) is a peptide antibiotic active only against members of a specific group of α-proteobacteria that includes Agrobacterium and its close relatives. The ability of TFX production by an avirulent strain of Agrobacterium to reduce crown gall disease is examined here.
TFX was shown to be inhibitory in vitro against several A. vitis strains. TFX production, expressed from the stable plasmid pT2TFXK, conferred biological control activity to an avirulent strain of A. vitis. F2/5, against three virulent, TFX-sensitive strains of A. vitis tested on Nicotiana glauca. F2/5(pT2TFXK) is significantly reduces number and size of galls when co-inoculated with tumorigenic strain CG78 at a 10:1 ratio, but is ineffective at 1:1 or 1:10 ratios. F2/5(pT2TFXK) is effective when co-inoculated with tumorigenic strain CG435 at 10:1 and 1:1 ratios, but not at a 1:10 ratio. When F2/5(pT2TFXK) is co-inoculated with CG49 at a 10:1 ratio, the incidence of gall formation does not decline but gall size decreases by more than 70%. A 24 h pre-inoculation with F2/5(pT2TFXK) does not improve biological control at the 1:10 ratio.
TFX production by an avirulent strain of Agrobacterium does confer in that strain the ability to control crown gall disease on Nicotiana glauca. This is the first demonstration that the production of a ribosomally synthesized, post-translationally modified peptide antibiotic can confer reduction in plant disease incidence from a bacterial pathogen.
PMCID: PMC99048  PMID: 11882255
21.  Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes 
BMC Biotechnology  2002;2:1.
Genetic engineering of parthenocarpy confers to horticultural plants the ability to produce fruits under environmental conditions that curtail fruit productivity and quality. The DefH9-iaaM transgene, whose predicted action is to confer auxin synthesis specifically in the placenta, ovules and derived tissues, has been shown to confer parthenocarpy to several plant species (tobacco, eggplant, tomato) and varieties.
UC82 tomato plants, a typical cultivar used by the processing industry, transgenic for the DefH9-iaaM gene produce parthenocarpic fruits that are malformed. UC82 plants transgenic for the DefH9-RI-iaaM, a DefH9-iaaM derivative gene modified in its 5'ULR by replacing 53 nucleotides immediately upstream of the AUG initiation codon with an 87 nucleotides-long sequence derived from the rolA intron sequence, produce parthenocarpic fruits of high quality. In an in vitro translation system, the iaaM mRNA, modified in its 5'ULR is translated 3–4 times less efficiently than the original transcript. An optimal expressivity of parthenocarpy correlates with a reduced transgene mRNA steady state level in DefH9-RI-iaaM flower buds in comparison to DefH9-iaaM flower buds. Consistent with the known function of the iaaM gene, flower buds transgenic for the DefH9-RI-iaaM gene contain ten times more IAA than control untransformed flower buds, but five times less than DefH9-iaaM flower buds.
By using an auxin biosynthesis transgene downregulated at the post-transcriptional level, an optimal expressivity of parthenocarpy has been achieved in a genetic background not suitable for the original transgene. Thus, the method allows the generation of a wider range of expressivity of the desired trait in transgenic plants.
PMCID: PMC65046  PMID: 11818033

Results 1-21 (21)