PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (94)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Production of highly knotted DNA by means of cosmid circularization inside phage capsids 
BMC Biotechnology  2007;7:94.
Background
The formation of DNA knots is common during biological transactions. Yet, functional implications of knotted DNA are not fully understood. Moreover, potential applications of DNA molecules condensed by means of knotting remain to be explored. A convenient method to produce abundant highly knotted DNA would be highly valuable for these studies.
Results
We had previously shown that circularization of the 11.2 kb linear DNA of phage P4 inside its viral capsid generates complex knots by the effect of confinement. We demonstrate here that this mechanism is not restricted to the viral genome. We constructed DNA cosmids as small as 5 kb and introduced them inside P4 capsids. Such cosmids were then recovered as a complex mixture of highly knotted DNA circles. Over 250 μg of knotted cosmid were typically obtained from 1 liter of bacterial culture.
Conclusion
With this biological system, DNA molecules of varying length and sequence can be shaped into very complex and heterogeneous knotted forms. These molecules can be produced in preparative amounts suitable for systematic studies and applications.
doi:10.1186/1472-6750-7-94
PMCID: PMC2231350  PMID: 18154674
2.  Improved functional expression of recombinant human ether-a-go-go (hERG) K+ channels by cultivation at reduced temperature 
BMC Biotechnology  2007;7:93.
Background
HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance.
Results
Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C.
Conclusion
Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.
doi:10.1186/1472-6750-7-93
PMCID: PMC2241608  PMID: 18096051
3.  Quantitative comparison of DNA detection by GFP-lac repressor tagging, fluorescence in situ hybridization and immunostaining 
BMC Biotechnology  2007;7:92.
Background
GFP-fusion proteins and immunostaining are methods broadly applied to investigate the three-dimensional organization of cells and cell nuclei, the latter often studied in addition by fluorescence in situ hybridization (FISH). Direct comparisons of these detection methods are scarce, however.
Results
We provide a quantitative comparison of all three approaches. We make use of a cell line that contains a transgene array of lac operator repeats which are detected by GFP-lac repressor fusion proteins. Thus we can detect the same structure in individual cells by GFP fluorescence, by antibodies against GFP and by FISH with a probe against the transgene array. Anti-GFP antibody detection was repeated after FISH. Our results show that while all four signals obtained from a transgene array generally showed qualitative and quantitative similarity, they also differed in details.
Conclusion
Each of the tested methods revealed particular strengths and weaknesses, which should be considered when interpreting respective experimental results. Despite the required denaturation step, FISH signals in structurally preserved cells show a surprising similarity to signals generated before denaturation.
doi:10.1186/1472-6750-7-92
PMCID: PMC2254608  PMID: 18096031
4.  Microarray-based method for detection of unknown genetic modifications 
BMC Biotechnology  2007;7:91.
Background
Due to the increased use of genetic modifications in crop improvement, there is a need to develop effective methods for the detection of both known and unknown transgene constructs in plants. We have developed a strategy for detection and characterization of unknown genetic modifications and we present a proof of concept for this method using Arabidopsis thaliana and Oryza sativa (rice). The approach relies on direct hybridization of total genomic DNA to high density microarrays designed to have probes tiled throughout a set of reference sequences.
Results
We show that by using arrays with 25 basepair probes covering both strands of a set of 235 vectors (2 million basepairs) we can detect transgene sequences in transformed lines of A. thaliana and rice without prior knowledge about the transformation vectors or the T-DNA constructs used to generate the studied plants.
Conclusion
The approach should allow the user to detect the presence of transgene sequences and get sufficient information for further characterization of unknown genetic constructs in plants. The only requirements are access to a small amount of pure transgene plant material, that the genetic construct in question is above a certain size (here ≥ 140 basepairs) and that parts of the construct shows some degree of sequence similarity with published genetic elements.
doi:10.1186/1472-6750-7-91
PMCID: PMC2225397  PMID: 18088429
5.  Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord 
BMC Biotechnology  2007;7:90.
Background
Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord.
Results
First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants.
Conclusion
In this study, we demonstrate that genetically modified hMSC lines can survive in healthy rat spinal cord over at least 3 weeks by using adequate immune suppression and can serve as vehicles for transgene expression. However, before genetically modified hMSC can potentially be used in a clinical setting to treat spinal cord injuries, more research on standardisation of hMSC culture and genetic modification needs to be done in order to prevent tumour formation and transgene silencing in vivo.
doi:10.1186/1472-6750-7-90
PMCID: PMC2225398  PMID: 18078525
6.  GADD153 expression does not necessarily correlate with changes in culture behavior of hybridoma cells 
BMC Biotechnology  2007;7:89.
Background
The acute sensitivity of some hybridoma cell lines to culture-related stresses severely limits their productivity. Recent developments in the characterization of the stress signals modulating the cellular phenotype revealed that the pro-apoptotic transcription factor Gadd153 could be used as a marker to facilitate the optimization of mammalian cell cultures. In this report, we analyzed the expression of Gadd153 in Sp2/0-Ag14 murine hybridoma cells grown in stationary batch culture and subjected to two different culture optimization paradigms: L-glutamine supplementation and ectopic expression of Bcl-xL, an anti-apoptotic gene.
Results
The expression of Gadd153 was found to increase in Sp2/0-Ag14 cells in a manner which coincided with the decline in cell viability. L-glutamine supplementation prolonged Sp2/0-Ag14 cell survival and greatly suppressed Gadd153 expression both at the mRNA and protein level. However, Gadd153 levels remained low after L-glutamine supplementation even as cell viability declined. Bcl-xL overexpression also extended Sp2/0-Ag14 cell viability, initially delayed the induction of Gadd153, but did not prevent the increase in Gadd153 protein levels during the later phase of the culture, when cell viability was declining. Interestingly, L-glutamine supplementation prevented Gadd153 up-regulation in cells ectopically expressing Bcl-xL, but had no effect on cell viability.
Conclusion
This study highlights important limitations to the use of Gadd153 as an indicator of cell stress in hybridoma cells.
doi:10.1186/1472-6750-7-89
PMCID: PMC2222238  PMID: 18070358
7.  Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing 
BMC Biotechnology  2007;7:88.
Background
Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale.
Results
Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms.
Conclusion
Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.
doi:10.1186/1472-6750-7-88
PMCID: PMC2235856  PMID: 18070345
8.  Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos 
BMC Biotechnology  2007;7:87.
Background
The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR.
Results
We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression.
Conclusion
This paper describes the first example of multiplex RT-LATE-PCR and its utility, when combined with PurAmp sample preparation, for quantitative analysis of transcript levels in single cells. With this technique, copy numbers of different RNAs can be accurately measured independently from their relative abundance in a cell, a goal that cannot be achieved using symmetric PCR. The technique illustrated in this work is relevant to a wide array of applications, such as stem cell and cancer cell analysis and preimplantation genetic diagnostics.
doi:10.1186/1472-6750-7-87
PMCID: PMC2246118  PMID: 18067662
9.  Arginine-to-lysine substitutions influence recombinant horseradish peroxidase stability and immobilisation effectiveness 
BMC Biotechnology  2007;7:86.
Background
Horseradish Peroxidase (HRP) plays important roles in many biotechnological fields, including diagnostics, biosensors and biocatalysis. Often, it is used in immobilised form. With conventional immobilisation techniques, the enzyme adheres in random orientation: the active site may face the solid phase rather than bulk medium, impeding substrate access and leading to sub-optimal catalytic performance. The ability to immobilise HRP in a directional manner, such that the active site would always face outwards from the insoluble matrix, would maximise the immobilised enzyme's catalytic potential and could increase HRP's range of actual and potential applications.
Results
We have replaced arginine residues on the face of glycan-free recombinant HRP opposite to the active site by lysines. Our strategy differs from previous reports of specific HRP immobilisation via an engineered affinity tag or single reactive residue. These conservative Arg-to-Lys substitutions provide a means of multipoint covalent immobilisation such that the active site will always face away from the immobilisation matrix.
One triple and one pentuple mutant were generated by substitution of solvent-exposed arginines on the "back" of the polypeptide (R118, R159 and R283) and of residues known to influence stability (K232 and K241). Orientated HRP immobilisation was demonstrated using a modified polyethersulfone (PES) membrane; the protein was forced to orientate its active site away from the membrane and towards the bulk solution phase.
Mutant properties and bioinformatic analysis suggested the reversion of K283R to improve stability, thus generating two additional mutants (K118/R159K and R118K/K232N/K241F/R283K). While most mutants were less stable in free solution than wild type rHRP, the quadruple revertant regained some stability over its mutant counterparts. A greater degree of immobilisation on CNBr-activated Sepharose™ was noted with increased lysine content; however, only marginal gains in solvent stability resulted from immobilisation on this latter matrix.
Conclusion
Directional, orientated, immobilisation of rHRP mutants onto an activated, modified polyethersulfone membrane has been achieved with excellent retention of catalytic activity; however, re-engineering of acceptable stability characteristics into the "immobilisation mutants" will determine their applicability in diagnosis and biosensor development.
doi:10.1186/1472-6750-7-86
PMCID: PMC2234406  PMID: 18053254
10.  Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC 
BMC Biotechnology  2007;7:84.
Background
Antibody-dependent cellular cytotoxicity (ADCC) is greatly enhanced by the absence of the core fucose of oligosaccharides attached to the Fc, and is closely related to the clinical efficacy of anticancer activity in humans in vivo. Unfortunately, all licensed therapeutic antibodies and almost all currently-developed therapeutic antibodies are heavily fucosylated and fail to optimize ADCC, which leads to a large dose requirement at a very high cost for the administration of antibody therapy to cancer patients. In this study, we explored the possibility of converting already-established antibody-producing cells to cells that produce antibodies fully lacking core fucosylation in order to facilitate the rapid development of next-generation therapeutic antibodies.
Results
Firstly, loss-of-function analyses using small interfering RNAs (siRNAs) against the three key genes involved in oligosaccharide fucose modification, i.e. α1,6-fucosyltransferase (FUT8), GDP-mannose 4,6-dehydratase (GMD), and GDP-fucose transporter (GFT), revealed that single-gene knockdown of each target was insufficient to completely defucosylate the products in antibody-producing cells, even though the most effective siRNA (>90% depression of the target mRNA) was employed. Interestingly, beyond our expectations, synergistic effects of FUT8 and GMD siRNAs on the reduction in fucosylation were observed, but not when these were used in combination with GFT siRNA. Secondly, we successfully developed an effective short hairpin siRNA tandem expression vector that facilitated the double knockdown of FUT8 and GMD, and we converted antibody-producing Chinese hamster ovary (CHO) cells to fully non-fucosylated antibody producers within two months, and with high converting frequency. Finally, the stable manufacture of fully non-fucosylated antibodies with enhanced ADCC was confirmed using the converted cells in serum-free fed-batch culture.
Conclusion
Our results suggest that FUT8 and GMD collaborate synergistically in the process of intracellular oligosaccharide fucosylation. We also demonstrated that double knockdown of FUT8 and GMD in antibody-producing cells could serve as a new strategy for producing next-generation therapeutic antibodies fully lacking core fucosylation and with enhanced ADCC. This approach offers tremendous cost- and time-sparing advantages for the development of next-generation therapeutic antibodies.
doi:10.1186/1472-6750-7-84
PMCID: PMC2216013  PMID: 18047682
11.  A new generation of pPRIG-based retroviral vectors 
BMC Biotechnology  2007;7:85.
Background
Retroviral vectors are valuable tools for gene transfer. Particularly convenient are IRES-containing retroviral vectors expressing both the protein of interest and a marker protein from a single bicistronic mRNA. This coupled expression increases the relevance of tracking and/or selection of transduced cells based on the detection of a marker protein. pAP2 is a retroviral vector containing eGFP downstream of a modified IRES element of EMCV origin, and a CMV enhancer-promoter instead of the U3 region of the 5'LTR, which increases its efficiency in transient transfection. However, pAP2 contains a limited multicloning site (MCS) and shows weak eGFP expression, which previously led us to engineer an improved version, termed pPRIG, harboring: i) the wild-type ECMV IRES sequence, thereby restoring its full activity; ii) an optimized MCS flanked by T7 and SP6 sequences; and iii) a HA tag encoding sequence 5' of the MCS (pPRIG HAa/b/c).
Results
The convenience of pPRIG makes it a good basic vector to generate additional derivatives for an extended range of use. Here we present several novel pPRIG-based vectors (collectively referred to as PRIGs) in which : i) the HA tag sequence was inserted in the three reading frames 3' of the MCS (3'HA PRIGs); ii) a functional domain (ER, VP16 or KRAB) was inserted either 5' or 3' of the MCS (« modular » PRIGs); iii) eGFP was replaced by either eCFP, eYFP, mCherry or puro-R (« single color/resistance » PRIGs); and iv) mCherry, eYFP or eGFP was inserted 5' of the MCS of the IRES-eGFP, IRES-eCFP or IRES-Puro-R containing PRIGs, respectively (« dual color/selection » PRIGs). Additionally, some of these PRIGs were also constructed in a pMigR MSCV background which has been widely used in pluripotent cells.
Conclusion
These novel vectors allow for straightforward detection of any expressed protein (3'HA PRIGs), for functional studies of chimeric proteins (« modular » PRIGs), for multiple transductions and fluorescence analyses of transduced cells (« single color/resistance » PRIGs), or for quantitative detection of studied proteins in independently identified/selected transduced cells (« dual color/selection » PRIGs). They maintain the original advantages of pPRIG and provide suitable tools for either transient or stable expression and functional studies in a large range of experimental settings.
doi:10.1186/1472-6750-7-85
PMCID: PMC2241607  PMID: 18053131
12.  Enhanced transduction of colonic cell lines in vitro and the inflamed colon in mice by viral vectors, derived from adeno-associated virus serotype 2, using virus-microbead conjugates bearing lectin 
BMC Biotechnology  2007;7:83.
Background
Virus-mediated delivery of therapeutic transgenes to the inflamed colon holds a great potential to serve as an effective therapeutic strategy for inflammatory bowel disease, since local, long-term expression of the encoded therapeutic proteins in the colorectal system is potentially achievable. Viral vectors, derived from adeno-associated virus (AAV), should be very useful for such therapeutic strategies, particularly because they can establish long-term expression of transgenes. However, few studies have been carried out to investigate the ability of AAV-based vectors to transduce the inflamed colon.
Results
AAV, derived from adeno-associated virus serotype 2 (AAV2), showed a limited ability to transduce colonic cell lines in vitro when used in free form. No appreciable enhancement of the transduction efficiency was seen when AAV2 particles were attached stably to the surfaces of microbeads and delivered to target cells in the form of AAV2-microbead conjugates. However, the transduction efficiency of these colonic cell lines was enhanced substantially when a lectin, concanavalin A (Con A), was co-attached to the microbead surfaces, to which AAV2 particles had been conjugated. This considerable infectivity enhancement of AAV2-microbead conjugates by the co-attachment of Con A may be derived from the fact that Con A binds to α-D-mannosyl moieties that are commonly and abundantly present in cell-surface carbohydrate chains, allowing the conjugates to associate stably with target cells. Intracolonical administration of free AAV2 or AAV2-microbead conjugates without Con A into a mouse colitis model by enema showed very poor transduction of the colonic tissue. In contrast, the delivery of AAV2 in the form of AAV2-microbead conjugates bearing Con A resulted in efficient transduction of the inflamed colon.
Conclusion
AAV2-microbead conjugates bearing Con A can serve as efficient gene transfer agents both for poorly permissive colonic cell lines in vitro and for the inflamed colon in a mouse colitis model. This efficient transduction system for the inflamed colon should be useful for the development of gene therapy strategies for inflammatory bowel disease.
doi:10.1186/1472-6750-7-83
PMCID: PMC2217541  PMID: 18045466
13.  Compatible solutes from hyperthermophiles improve the quality of DNA microarrays 
BMC Biotechnology  2007;7:82.
Background
DNA microarrays are among the most widely used technical platforms for DNA and RNA studies, and issues related to microarrays sensitivity and specificity are therefore of general importance in life sciences. Compatible solutes are derived from hyperthermophilic microorganisms and allow such microorganisms to survive in environmental and stressful conditions. Compatible solutes show stabilization effects towards biological macromolecules, including DNA.
Results
We report here that compatible solutes from hyperthermophiles increased the performance of the hybridization buffer for Affymetrix GeneChip® arrays. The experimental setup included independent hybridizations with constant RNA over a wide range of compatible solute concentrations. The dependence of array quality and compatible solute was assessed using specialized statistical tools provided by both the proprietary Affymetrix quality control system and the open source Bioconductor suite.
Conclusion
Low concentration (10 to 25 mM) of hydroxyectoine, potassium mannosylglycerate and potassium diglycerol phosphate in hybridization buffer positively affected hybridization parameters and enhanced microarrays outcome. This finding harbours a strong potential for the improvement of DNA microarray experiments.
doi:10.1186/1472-6750-7-82
PMCID: PMC2248183  PMID: 18036223
14.  A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm 
BMC Biotechnology  2007;7:81.
Background
Intrabodies are defined as antibody molecules which are ectopically expressed inside the cell. Such intrabodies can be used to visualize or inhibit the targeted antigen in living cells. However, most antibody fragments cannot be used as intrabodies because they do not fold under the reducing conditions of the cell cytosol and nucleus.
Results
We describe the construction and validation of a large synthetic human single chain antibody fragment library based on a unique framework and optimized for cytoplasmic expression. Focusing the library by mimicking the natural diversity of CDR3 loops ensured that the scFvs were fully human and functional. We show that the library is highly diverse and functional since it has been possible to isolate by phage-display several strong binders against the five proteins tested in this study, the Syk and Aurora-A protein kinases, the αβ tubulin dimer, the papillomavirus E6 protein and the core histones. Some of the selected scFvs are expressed at an exceptional high level in the bacterial cytoplasm, allowing the purification of 1 mg of active scFv from only 20 ml of culture. Finally, we show that after three rounds of selection against core histones, more than half of the selected scFvs were active when expressed in vivo in human cells since they were essentially localized in the nucleus.
Conclusion
This new library is a promising tool not only for an easy and large-scale selection of functional intrabodies but also for the isolation of highly expressed scFvs that could be used in numerous biotechnological and therapeutic applications.
doi:10.1186/1472-6750-7-81
PMCID: PMC2241821  PMID: 18034894
15.  Construction of stably maintained non-mobilizable derivatives of RSF1010 lacking all known elements essential for mobilization 
BMC Biotechnology  2007;7:80.
Background
RSF1010 is a well-studied broad-host-range plasmid able to be mobilized to different bacteria and plants. RSF1010-derived plasmid vectors are widely used in both basic research and industrial applications. In the latter case, exploiting of mobilizable plasmids or even the plasmids possessing negligible mobilization frequency, but containing DNA fragments that could promote conjugal transfer, is undesirable because of biosafety considerations. Previously, several mutations significantly decreasing efficiency of RSF1010 mobilization have been selected. Nevertheless, construction of the RSF1010 derivative lacking all known loci involved in the conjugal transfer has not been reported yet.
Results
Novel non-mobilizable derivatives of RSF1010 lacking all known DNA sequences involved in the mobilization process have been obtained due to the exploiting of λRed-driven recombination between the plasmid and a constructed in vitro linear DNA fragment. To provide auto-regulated transcription of the essential replication gene, repB, the plasmid loci oriT, mobC and mobA were substituted by the DNA fragment containing PlacUV5→lacI. Mobilization of the obtained RSFmob plasmid was not detected in standard tests. The derivative of RSFmob with increased copy number has been obtained after lacI elimination. High stability of both constructed plasmids has been demonstrated in Escherichia coli and Pantoea ananatis. Design of RSFmob allows easy substitution of PlacUV5 by any desirable promoter for construction of novel derivatives with changed copy number or host range.
Conclusion
Novel non-mobilizable derivatives of RSF1010 lacking all known DNA sequences involved in the mobilization process and stably maintained at least in E. coli and P. ananatis have been constructed. The obtained plasmids became the progenitors of new cloning vectors answering all biosafety requirements of genetically modified organisms used in scale-up production.
doi:10.1186/1472-6750-7-80
PMCID: PMC2200642  PMID: 18028554
16.  Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library 
BMC Biotechnology  2007;7:78.
Background
Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences.
Results
A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications.
Conclusion
We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.
doi:10.1186/1472-6750-7-78
PMCID: PMC2213646  PMID: 18021450
17.  Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression 
BMC Biotechnology  2007;7:79.
Background
RNA polymerase III (pol III) type 3 promoters such as U6 or 7SK are commonly used to express short-hairpin RNA (shRNA) effectors for RNA interference (RNAi). To extend the use of RNAi for studies of development using the chicken as a model system, we have developed a system for expressing shRNAs using the chicken 7SK (ch7SK) promoter.
Results
We identified and characterised the ch7SK promoter sequence upstream of the full-length 7SK small nuclear RNA (snRNA) sequence in the chicken genome and used this to construct vectors to express shRNAs targeting enhanced green fluorescent protein (EGFP). We transfected chicken DF-1 cells with these constructs and found that anti-EGFP-shRNAs (shEGFP) expressed from the ch7SK promoter could induce efficient knockdown of EGFP expression. We further compared the efficiency of ch7SK-directed knockdown to that of chicken U6 (cU6) promoters and found that the efficiency of the ch7SK promoter was not greater than, but comparable to the efficiency of cU6 promoters.
Conclusion
In this study we have demonstrated that the ch7SK promoter can express shRNAs capable of mediating efficient RNAi in a chicken cell line. However, our finding that RNAi driven by the ch7SK promoter is not more efficient than cU6 promoters contrasts previous comparisons of mammalian U6 and 7SK promoters. Since the ch7SK promoter is the first non-mammalian vertebrate 7SK promoter to be characterised, this finding may be helpful in understanding the divergence of pol III promoter activities between mammalian and non-mammalian vertebrates. This aside, our results clearly indicate that the ch7SK promoter is an efficient alternative to U6-based shRNA expression systems for inducing efficient RNAi activity in chicken cells.
doi:10.1186/1472-6750-7-79
PMCID: PMC2235858  PMID: 18021456
18.  Revealing biases inherent in recombination protocols 
BMC Biotechnology  2007;7:77.
Background
The recombination of homologous genes is an effective protein engineering tool to evolve proteins. DNA shuffling by gene fragmentation and reassembly has dominated the literature since its first publication, but this fragmentation-based method is labor intensive. Recently, a fragmentation-free PCR based protocol has been published, termed recombination-dependent PCR, which is easy to perform. However, a detailed comparison of both methods is still missing.
Results
We developed different test systems to compare and reveal biases from DNA shuffling and recombination-dependent PCR (RD-PCR), a StEP-like recombination protocol. An assay based on the reactivation of β-lactamase was developed to simulate the recombination of point mutations. Both protocols performed similarly here, with slight advantages for RD-PCR. However, clear differences in the performance of the recombination protocols were observed when applied to homologous genes of varying DNA identities. Most importantly, the recombination-dependent PCR showed a less pronounced bias of the crossovers in regions with high sequence identity. We discovered that template variations, including engineered terminal truncations, have significant influence on the position of the crossovers in the recombination-dependent PCR. In comparison, DNA shuffling can produce higher crossover numbers, while the recombination-dependent PCR frequently results in one crossover. Lastly, DNA shuffling and recombination-dependent PCR both produce counter-productive variants such as parental sequences and have chimeras that are over-represented in a library, respectively. Lastly, only RD-PCR yielded chimeras in the low homology situation of GFP/mRFP (45% DNA identity level).
Conclusion
By comparing different recombination scenarios, this study expands on existing recombination knowledge and sheds new light on known biases, which should improve library-creation efforts. It could be shown that the recombination-dependent PCR is an easy to perform alternative to DNA shuffling.
doi:10.1186/1472-6750-7-77
PMCID: PMC2203992  PMID: 18001472
19.  Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications 
BMC Biotechnology  2007;7:76.
Background
EvaGreen (EG) is a newly developed DNA-binding dye that has recently been used in quantitative real-time PCR (qPCR), post-PCR DNA melt curve analysis and several other applications. However, very little is known about the physicochemical properties of the dye and their relevance to the applications, particularly to qPCR and post PCR DNA melt curve analysis. In this paper, we characterized EG along with a widely used qPCR dye, SYBR Green I (SG), for their DNA-binding properties and stability, and compared their performance in qPCR under a variety of conditions.
Results
This study systematically compared the DNA binding profiles of the two dyes under different conditions and had these findings: a) EG had a lower binding affinity for both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) than SG; b) EG showed no apparent preference for either GC- or AT-rich sequence while SG had a slight preference for AT-rich sequence; c) both dyes showed substantially lower affinity toward ssDNA than toward dsDNA and even lower affinity toward shorter ssDNA fragments except that this trend was more pronounced for EG. Our results also demonstrated that EG was stable both under PCR condition and during routine storage and handling. In the comparative qPCR study, both EG and SG exhibited PCR interference when used at high dye concentration, as evident from delayed Ct and/or nonspecific product formation. The problem worsened when the chain extension time was shortened or when the amplicon size was relatively long (>500 bp). However, qPCR using EG tolerated a significantly higher dye concentration, thus permitting a more robust PCR signal as well as a sharper and stronger DNA melt peak. These differences in qPCR performance between the two dyes are believed to be attributable to their differences in DNA binding profiles.
Conclusion
These findings suggest that an ideal qPCR dye should possess several DNA-binding characteristics, including a "just right" affinity for dsDNA and low or no affinity for ssDNA and short DNA fragments. The favorable DNA-binding profile of EG, coupled with its good stability and instrument-compatibility, should make EG a promising dye for qPCR and related applications.
doi:10.1186/1472-6750-7-76
PMCID: PMC2213645  PMID: 17996102
20.  Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice 
BMC Biotechnology  2007;7:75.
Background
Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV) type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features.
Results
We designed recombinant adeno-associated virus (rAAV) vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF) into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7). Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression.
Conclusion
Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.
doi:10.1186/1472-6750-7-75
PMCID: PMC2211474  PMID: 17986332
21.  Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle 
BMC Biotechnology  2007;7:74.
Background
Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs) allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV) IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals.
Results
Our data demonstrate that the efficiency of the FGF-1 IRES is comparable to that of the EMCV IRES for long term expression of bicistronic transgenes in mouse muscle, whereas the FGF-2 IRES has a very poor activity. Interestingly, we show that despite the global decrease of vector expression over time, the ratio of firefly to renilla luciferase remains stable with bicistronic vectors containing the FGF-1 or FGF-2 IRES and is slightly affected with the EMCV IRES, whereas it is clearly unstable for mixed monocistronic vectors. In addition, long term expression more drastically decreases with monocistronic vectors, and is different for single or mixed vector injection.
Conclusion
These data validate the use of bicistronic vectors rather than mixed monocistronic vectors for long term expression, and support the use of the FGF-1 IRES. The use of a cellular IRES over one of viral origin is of particular interest in the goal of eliminating viral sequences from transgenic vectors. In addition, the FGF-1 IRES, compared to the EMCV IRES, has a more stable activity, is shorter in length and more flexible in terms of downstream cloning of second cistrons. Finally, the FGF-1 IRES is very attractive to develop multicistronic expression cassettes for gene transfer in mouse muscle.
doi:10.1186/1472-6750-7-74
PMCID: PMC2180170  PMID: 17963525
22.  Webtag: a new web tool providing tags/anchors for RT-PCR experiments with prokaryotes 
BMC Biotechnology  2007;7:73.
Background
Webtag is a tool providing oligonucleotide sequences (usually called tags or anchors) that are absent from a specified genome. These tags/anchors can be appended to gene specific primers for reverse transcriptase polymerase chain reaction experiments, circumventing genomic DNA contamination.
Results
The use of a relational database, in conjunction with a series of scripts written in PHP and Perl, allows the user to rapidly obtain tags that are: 1) suitable for a specific organism, and 2) compatible with other oligonucleotides to be used in the experimental procedures.
Conclusion
This new web tool allows scientists to easily and rapidly obtain suitable tags for RT-PCR experiments, and is available at .
doi:10.1186/1472-6750-7-73
PMCID: PMC2147000  PMID: 17961214
23.  An integrative expression vector for Actinosynnema pretiosum 
BMC Biotechnology  2007;7:72.
Background
The Actinomycete Actinosynnema pretiosum ssp. auranticum has commercial importance due to its production of ansamitocin P-3 (AP-3), a potent antitumor agent. One way to increase AP-3 production would be to constitutively express selected genes so as to relieve bottlenecks in the biosynthetic pathway; however, an integrative expression vector for A. pretiosum is lacking. The aim of this study was to construct a vector for heterologous gene expression in A. pretiosum.
Results
A series of integrative expression vectors have been made with the following features: the IS117 transposase from Streptomyces coelicolor, the constitutive ermE* promoter from Saccharopolyspora erythraea, different ribosome-binding site (RBS) sequences and xylE as a translational reporter. Positive E. coli clones and A. pretiosum transconjugants were assayed by catechol. pAP42, containing an E. coli consensus RBS, and pAP43, containing an asm19 RBS, gave strong and moderate gene expression, respectively. In addition, an operon construct capable of multi-gene expression was created. Plasmid integration sites in transconjugants were investigated and four different sites were observed. Although the most common integration site was within a putative ORF with sequence similarity to NADH-flavin reductase, AP-3 levels and cell growth of transconjugants were unaffected.
Conclusion
A set of integrative vectors for constitutive gene expression in A. pretiosum has been constructed. Gene translation is easily determined by colorimetric assay on an agar plate. The vectors are suitable for studies relating to AP-3 biosynthesis as they do not affect AP-3 production.
doi:10.1186/1472-6750-7-72
PMCID: PMC2194683  PMID: 17956638
24.  In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle PRINS 
BMC Biotechnology  2007;7:69.
Background
In situ detection is traditionally performed with long labeled probes often followed by a signal amplification step to enhance the labeling. Whilst short probes have several advantages over long probes (e.g. higher resolution and specificity) they carry fewer labels per molecule and therefore require higher amplification for detection. Furthermore, short probes relying only on hybridization for specificity can result in non-specific signals appearing anywhere the probe attaches to the target specimen. One way to obtain high amplification whilst minimizing the risk of false positivity is to use small circular probes (e.g. Padlock Probes) in combination with target primed rolling circle DNA synthesis. This has previously been used for DNA detection in situ, but not until now for RNA targets.
Results
We present here a proof of principle investigation of a novel rolling circle technology for the detection of non-polyadenylated RNA molecules in situ, including a new probe format (the Turtle Probe) and optimized procedures for its use on formalin fixed paraffin embedded tissue sections and in solid support format applications.
Conclusion
The method presented combines the high discriminatory power of short oligonucleotide probes with the impressive amplification power and selectivity of the rolling circle reaction, providing excellent signal to noise ratios in combination with exact target localization due to the target primed reaction. Furthermore, the procedure is easily multiplexed, allowing visualization of several different RNAs.
doi:10.1186/1472-6750-7-69
PMCID: PMC2203993  PMID: 17945012
25.  Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells 
BMC Biotechnology  2007;7:70.
Background
There is much evidence that tumor cells elicit a humoral immune response in patients. In most cases, the presence of antibodies in peripheral blood is detected only in small proportion of patients with tumors overexpressing the corresponding antigen. In the present study, we analyzed the significance of local humoral response provided by tumor-infiltrating lymphocytes in breast cancer patients.
Methods
The ability of a patient's immune system to produce specific antibodies inside tumor tissue, capable of recognizing tumor cells, was explored through analysis of the oligoclonality of antibodies derived from tumor-infiltrating lymphocytes and construction of a series of recombinant antibody libraries in scFv format, derived from breast tumor-infiltrating B lymphocytes. These libraries and one from peripheral blood lymphocytes of a single breast cancer patient were panned against three purified surface tumor antigens, such as CEA, MUC1 and ED-B domain, and against intact MCF7 breast carcinoma cells.
Results
Application of novel display vector, pKM19, allowed isolation of a large panel of breast cancer-specific antibodies against known tumor antigens, as well as against breast carcinoma cells. Reactivity of novel scFvs was confirmed by ELISA, immunohistochemistry, fluorescence staining and flow cytometry. We demonstrated that seven of ten primary breast tumor specimens, obtained using discarded surgical material, could be exploited as an appropriate source for generation of phage display libraries, giving highly specific antitumor antibodies which recognize heterologous tumor cells.
Conclusion
Local humoral immune response within tumor tissue in breast cancer patients frequently has an oligoclonal character. Efficient selection of specific antitumor antibodies from recombinant antibody libraries, derived from such oligoclonal tumor-infiltrated B lymphocytes, indicates the presence of natural immune response against tumor antigens in these patients. The described method is very promising for development of antitumor antibodies, potentially useful for diagnostic and therapeutic approaches.
doi:10.1186/1472-6750-7-70
PMCID: PMC2175506  PMID: 17945015

Results 1-25 (94)