Search tips
Search criteria

Results 1-25 (102)

Clipboard (0)
Year of Publication
1.  RNA degradation compromises the reliability of microRNA expression profiling 
BMC Biotechnology  2009;9:102.
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression and their expression is frequently altered in human diseases, including cancer. To correlate clinically relevant parameters with microRNA expression, total RNA is frequently prepared from samples that were archived for various time periods in frozen tissue banks but, unfortunately, RNA integrity is not always preserved in these frozen tissues. Here, we investigate whether experimentally induced RNA degradation affects microRNA expression profiles.
Tissue samples were maintained on ice for defined time periods prior to total RNA extraction, which resulted in different degrees of RNA degradation. MicroRNA expression was then analyzed by microarray analysis (miCHIP) or microRNA-specific real-time quantitative PCR (miQPCR). Our results demonstrate that the loss of RNA integrity leads to in unpredictability of microRNA expression profiles for both, array-based and miQPCR assays.
MicroRNA expression cannot be reliably profiled in degraded total RNA. For the profiling of microRNAs we recommend use of RNA samples with a RNA integrity number equal to or above seven.
PMCID: PMC2805631  PMID: 20025722
2.  Unrestricted somatic stem cells from human umbilical cord blood grow in serum-free medium as spheres 
BMC Biotechnology  2009;9:101.
Human umbilical cord blood-derived unrestricted somatic stem cells (USSCs), which are capable of multilineage differentiation, are currently under investigation for a number of therapeutic applications. A major obstacle to their clinical use is the fact that in vitro expansion is still dependent upon fetal calf serum, which could be a source of pathogens. In this study, we investigate the capacity of three different stem cell culture media to support USSCs in serum-free conditions; HEScGRO™, PSM and USSC growth mediumACF. Our findings demonstrate that USSCs do not grow in HEScGRO™ or PSM, but we were able to isolate, proliferate and maintain multipotency of three USSC lines in USSC growth mediumACF.
For the first one to three passages, cells grown in USSC growth mediumACF proliferate and maintain their morphology, but with continued passaging the cells form spherical cell aggregates. Upon dissociation of spheres, cells continue to grow in suspension and form new spheres. Dissociated cells can also revert to monolayer growth when cultured on extracellular matrix support (fibronectin or gelatin), or in medium containing fetal calf serum. Analysis of markers associated with pluripotency (Oct4 and Sox2) and differentiation (FoxA2, Brachyury, Goosecoid, Nestin, Pax6, Gata6 and Cytokeratin 8) confirms that cells in the spheres maintain their gene expression profile. The cells in the spheres also retain the ability to differentiate in vitro to form cells representative of the three germline layers after five passages.
These data suggest that USSC growth mediumACF maintains USSCs in an undifferentiated state and supports growth in suspension. This is the first demonstration that USSCs can grow in a serum- and animal component-free medium and that USSCs can form spheres.
PMCID: PMC2805630  PMID: 20003538
3.  An improved phage-display panning method to produce an HM-1 killer toxin anti-idiotypic antibody 
BMC Biotechnology  2009;9:99.
Phage-display panning is an integral part of biomedical research. Regular panning methods are sometimes complicated by inefficient detachment of the captured phages from the antigen-coated solid supports, which prompted us to modify. Here, we produce an efficient antigen-specific single chain fragment variable (scFv) antibody by using a target-related molecule that favored selection ofrecombinant antibodies.
To produce more selective and specific anti-idiotypic scFv-antibodies from a cDNA library, constructed from HM-1 killer toxin (HM-1)-neutralizing monoclonal antibodies (nmAb-KT), the method was modified by using an elution buffer supplemented with HM-1 that shares structural and functional similarities with the active site of the scFv antibody. Competitive binding of HM-1 to nmAb-KT allowed easy and quick dissociation of scFv-displayed phages from immobilized nmAb-KT to select specific anti-idiotypic scFv antibodies of HM-1. After modified panning, 80% clones (40/50) showed several times higher binding affinity to nmAb-KT than regular panning. The major populations (48%) of these clones (scFv K1) were genotypically same and had strong cytocidal activity against Saccharomyces and Candida species. The scFv K1 (Kd value = 4.62 × 10-8 M) had strong reactivity toward nmAb-KT, like HM-1 (Kd value = 6.74 × 10-9 M) as judged by SPR analysis.
The scFv antibodies generated after modified subtractive panning appear to have superior binding properties and cytocidal activity than regular panning. A simple modification of the elution condition in the phage-display panning protocol makes a large difference in determining success. Our method offers an attractive platform to discover potential therapeutic candidates.
PMCID: PMC2801674  PMID: 20003392
4.  Recombinant protein expression by targeting pre-selected chromosomal loci 
BMC Biotechnology  2009;9:100.
Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. Further, this allows to evaluate the impact of chromosomal surroundings on distinct vector constructs.
We explored antibody expression upon targeting diverse expression constructs into previously tagged loci in CHO-K1 and HEK293 cells that exhibit high reporter gene expression. These loci were selected by random transfer of reporter cassettes and subsequent screening. Both, retroviral infection and plasmid transfection with eGFP or antibody expression cassettes were employed for tagging. The tagged cell clones were screened for expression and single copy integration. Cell clones producing > 20 pg/cell in 24 hours could be identified. Selected integration sites that had been flanked with heterologous recombinase target sites (FRTs) were targeted by Flp recombinase mediated cassette exchange (RMCE). The results give proof of principle for consistent protein expression upon RMCE. Upon targeting antibody expression cassettes 90-100% of all resulting cell clones showed correct integration. Antibody production was found to be highly consistent within the individual cell clones as expected from their isogenic nature. However, the nature and orientation of expression control elements revealed to be critical. The impact of different promoters was examined with the tag-and-targeting approach. For each of the chosen promoters high expression sites were identified. However, each site supported the chosen promoters to a different extent, indicating that the strength of a particular promoter is dominantly defined by its chromosomal context.
RMCE provides a powerful method to specifically design vectors for optimized gene expression with high accuracy. Upon considering the specific requirements of chromosomal sites this method provides a unique tool to exploit such sites for predictable expression of biotechnologically relevant proteins such as antibodies.
PMCID: PMC2804664  PMID: 20003421
5.  Jellyfish mucin may have potential disease-modifying effects on osteoarthritis 
BMC Biotechnology  2009;9:98.
We aimed to study the effects of intra-articular injection of jellyfish mucin (qniumucin) on articular cartilage degeneration in a model of osteoarthritis (OA) created in rabbit knees by resection of the anterior cruciate ligament. Qniumucin was extracted from Aurelia aurita (moon jellyfish) and Stomolophus nomurai (Nomura's jellyfish) and purified by ion exchange chromatography. The OA model used 36 knees in 18 Japanese white rabbits. Purified qniumucin extracts from S. nomurai or A. aurita were used at 1 mg/ml. Rabbits were divided into four groups: a control (C) group injected with saline; a hyaluronic acid (HA)-only group (H group); two qniumucin-only groups (M groups); and two qniumucin + HA groups (MH groups). One milligram of each solution was injected intra-articularly once a week for 5 consecutive weeks, starting from 4 weeks after surgery. Ten weeks after surgery, the articular cartilage was evaluated macroscopically and histologically.
In the C and M groups, macroscopic cartilage defects extended to the subchondral bone medially and laterally. When the H and both MH groups were compared, only minor cartilage degeneration was observed in groups treated with qniumucin in contrast to the group without qniumucin. Histologically, densely safranin-O-stained cartilage layers were observed in the H and two MH groups, but cartilage was strongly maintained in both MH groups.
At the concentrations of qniumucin used in this study, injection together with HA inhibited articular cartilage degeneration in this model of OA.
PMCID: PMC2801673  PMID: 19995451
6.  A rapid and inexpensive labeling method for microarray gene expression analysis 
BMC Biotechnology  2009;9:97.
Global gene expression profiling by DNA microarrays is an invaluable tool in biological research. However, existing labeling methods are time consuming and costly and therefore often limit the scale of microarray experiments and sample throughput. Here we introduce a new, fast, inexpensive method for direct random-primed fluorescent labeling of eukaryotic cDNA for gene expression analysis and compare the results obtained on the NimbleGen microarray platform with two other widely-used labeling methods, namely the NimbleGen-recommended double-stranded cDNA protocol and the indirect (aminoallyl) method.
Two total RNA samples were labeled with each method and hybridized to NimbleGen expression arrays. Although all methods tested here provided similar global results and biological conclusions, the new direct random-primed cDNA labeling method provided slightly better correlation between replicates compared to the other methods and thus increased ability to find statistically significant differentially expressed genes.
The new direct random-primed cDNA labeling method introduced here is suitable for gene expression microarrays and provides a rapid, inexpensive alternative to existing methods. Using NimbleGen microarrays, the method produced excellent results comparable to those obtained with other methods. However, the simplicity and cost-effectiveness of the new method allows for increased sample throughput in microarray experiments and makes the process amenable to automation with a relatively simple liquid handling system.
PMCID: PMC2790446  PMID: 19939278
7.  Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries 
BMC Biotechnology  2009;9:95.
In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing.
It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion.
These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.
PMCID: PMC2784458  PMID: 19930565
8.  High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus 
BMC Biotechnology  2009;9:96.
In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein) in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein). In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef.
The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus) on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19) gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs) indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue.
We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor protein. Moreover, plant-derived Nef was purified, with enhanced yield, exploiting a two-step purification protocol. These results represent a first step towards the development of a plant-derived HIV vaccine.
PMCID: PMC2785776  PMID: 19930574
9.  Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent 
BMC Biotechnology  2009;9:94.
In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin.
When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl)-L-cysteine) (AEC) and the acetolactate synthase (ALS) inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT) were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS) from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed.
Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate) (Roundup®), AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean
PMCID: PMC2787498  PMID: 19922622
10.  Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations 
BMC Biotechnology  2009;9:93.
One theoretical explanation for the relatively poor performance of Brassica rapa (weed) × Brassica napus (crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur.
In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population.
The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased.
PMCID: PMC2780409  PMID: 19878583
11.  Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules 
BMC Biotechnology  2009;9:92.
Molecular evolution of carbohydrate binding modules (CBM) is a new approach for the generation of glycan-specific molecular probes. To date, the possibility of performing affinity maturation on CBM has not been investigated. In this study we show that binding characteristics such as affinity can be improved for CBM generated from the CBM4-2 scaffold by using random mutagenesis in combination with phage display technology.
Two modified proteins with greatly improved affinity for xyloglucan, a key polysaccharide abundant in the plant kingdom crucial for providing plant support, were generated. Both improved modules differ from other existing xyloglucan probes by binding to galactose-decorated subunits of xyloglucan. The usefulness of the evolved binders was verified by staining of plant sections, where they performed better than the xyloglucan-binding module from which they had been derived. They discriminated non-fucosylated from fucosylated xyloglucan as shown by their ability to stain only the endosperm, rich in non-fucosylated xyloglucan, but not the integument rich in fucosylated xyloglucan, on tamarind seed sections.
We conclude that affinity maturation of CBM selected from molecular libraries based on the CBM4-2 scaffold is possible and has the potential to generate new analytical tools for detection of plant carbohydrates.
PMCID: PMC2783032  PMID: 19878581
12.  Authentication scheme for routine verification of genetically similar laboratory colonies: a trial with Anopheles gambiae 
BMC Biotechnology  2009;9:91.
When rearing morphologically indistinguishable laboratory strains concurrently, the threat of unintentional genetic contamination is constant. Avoidance of accidental mixing of strains is difficult due to the use of common equipment, technician error, or the possibility of self relocation by adult mosquitoes ("free fliers"). In many cases, laboratory strains are difficult to distinguish because of morphological and genetic similarity, especially when laboratory colonies are isolates of certain traits from the same parental strain, such as eye color mutants, individuals with certain chromosomal arrangements or high levels of insecticide resistance. Thus, proving genetic integrity could seem incredibly time-consuming or impossible. On the other hand, lacking proof of genetically isolated laboratory strains could question the validity of research results.
We present a method for establishing authentication matrices to routinely distinguish and confirm that laboratory strains have not become physically or genetically mixed through contamination events in the laboratory. We show a specific example with application to Anopheles gambiae sensu stricto strains at the Malaria Research and Reference Reagent Resource Center. This authentication matrix is essentially a series of tests yielding a strain-specific combination of results.
These matrix-based methodologies are useful for several mosquito and insect populations but must be specifically tailored and altered for each laboratory based on the potential contaminants available at any given time. The desired resulting authentication plan would utilize the least amount of routine effort possible while ensuring the integrity of the strains.
PMCID: PMC2772846  PMID: 19849838
13.  Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells 
BMC Biotechnology  2009;9:90.
Whole cells are usually employed for biocatalytic reduction reactions to ensure efficient coenzyme regeneration and to avoid problems with enzyme purification and stability. The efficiency of whole cell-catalyzed bioreduction is frequently restricted by pronounced toxicity of substrate and/or product to the microbial cells and in many instances the use of two-phase reaction systems can solve such problems. Therefore, we developed new, biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs) as alternatives to conventional organic solvents, in order to improve the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one (TMSB) to (S)-4-(trimethylsilyl)-3-butyn-2-ol {(S)-TMSBOL}, a key intermediate for synthesis of 5-lipoxygenase inhibitors, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst.
Various ILs exerted significant but different effects on the bioreduction. Of all the tested water-immiscible ILs, the best results were observed with 1-butyl-3-methylimidazolium hexafluorophosphate (C4MIM·PF6), which exhibited not only good biocompatibility with the cells but also excellent solvent properties for the toxic substrate and product, thus markedly improving the efficiency of the bioreduction and the operational stability of the cells as compared to the IL-free aqueous system. 2-Propanol was shown to be the most suitable co-substrate for coenzyme regeneration, and it was found that the optimum volume ratio of buffer to C4MIM·PF6, substrate concentration, buffer pH, 2-propanol concentration and reaction temperature were 4/1 (v/v), 24 mM, 5.5, 130 mM and 30°C, respectively. Under these optimized conditions, the maximum yield and the product e.e. wer 97.7% and >99%, respectively, which are much higher than the corresponding values previously reported. The efficient whole-cell biocatalytic process was shown to be feasible on a 250-mL scale.
The whole cell-catalyzed asymmetric reduction of TMSB to (S)-TMSBOL can be substantially improved by using a C4MIM·PF6/buffer biphasic system instead of a single-phase aqueous system and the resulting biocatalytic process appears to be effective and competitive on a preparative scale.
PMCID: PMC2790445  PMID: 19849833
14.  Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes 
BMC Biotechnology  2009;9:89.
A clonal cell line that combines both stable hepatic function and proliferation capacity is desirable for in vitro applications that depend on hepatic function, such as pharmacological or toxicological assays and bioartificial liver systems. Here we describe the generation and characterization of a clonal human cell line for in vitro hepatocyte applications.
Cell clones derived from human fetal liver cells were immortalized by over-expression of telomerase reverse transcriptase. The resulting cell line, cBAL111, displayed hepatic functionality similar to the parental cells prior to immortalization, and did not grow in soft agar. Cell line cBAL111 expressed markers of immature hepatocytes, like glutathione S transferase and cytokeratin 19, as well as progenitor cell marker CD146 and was negative for lidocaine elimination. On the other hand, the cBAL111 cells produced urea, albumin and cytokeratin 18 and eliminated galactose. In contrast to hepatic cell lines NKNT-3 and HepG2, all hepatic functions were expressed in cBAL111, although there was considerable variation in their levels compared with primary mature hepatocytes. When transplanted in the spleen of immunodeficient mice, cBAL111 engrafted into the liver and partly differentiated into hepatocytes showing expression of human albumin and carbamoylphosphate synthetase without signs of cell fusion.
This novel liver cell line has the potential to differentiate into mature hepatocytes to be used for in vitro hepatocyte applications.
PMCID: PMC2770505  PMID: 19845959
15.  Regulated expression of a transgene introduced on an oriP/EBNA-1 PAC shuttle vector into human cells 
BMC Biotechnology  2009;9:88.
Sequencing of the human genome has led to most genes being available in BAC or PAC vectors. However, limited functional information has been assigned to most of these genes. Techniques for the manipulation and transfer of complete functional units on large DNA fragments into human cells are crucial for the analysis of complete genes in their natural genomic context. One limitation of the functional studies using these vectors is the low transfection frequency.
We have constructed a shuttle vector, pPAC7, which contains both the EBNA-1 gene and oriP from the Epstein-Barr virus allowing stable maintenance of PAC clones in the nucleus of human cells. The pPAC7 vector also contains the EGFP reporter gene, which allows direct monitoring of the presence of PAC constructs in transfected cells, and the Bsr-cassette that allows highly efficient and rapid selection in mammalian cells by use of blasticidin. Positive selection for recombinant PAC clones is obtained in pPAC7 because the cloning sites are located within the SacBII gene. We show regulated expression of the CDH3 gene carried as a 132 kb genomic insert cloned into pPAC7, demonstrating that the pPAC7 vector can be used for functional studies of genes in their natural genomic context. Furthermore, the results from the transfection of a range of pPAC7 based constructs into two human cell lines suggest that the transfection efficiencies are not only dependent on construct size.
The shuttle vector pPAC7 can be used to transfer large genomic constructs into human cells. The genes transferred could potentially contain all long-range regulatory elements, including their endogenous regulatory promoters. Introduction of complete genes in PACs into human cells would potentially allow complementation assays to identify or verify the function of genes affecting cellular phenotypes.
PMCID: PMC2770504  PMID: 19835613
16.  Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction 
BMC Biotechnology  2009;9:87.
When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown.
We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya).
We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.
PMCID: PMC2764706  PMID: 19814792
17.  Reduction of liver macrophage transduction by pseudotyping lentiviral vectors with a fusion envelope from Autographa californica GP64 and Sendai virus F2 domain 
BMC Biotechnology  2009;9:85.
Lentiviral vectors are well suited for gene therapy because they can mediate long-term expression in both dividing and nondividing cells. However, lentiviral vectors seem less suitable for liver gene therapy because systemically administered lentiviral vectors are preferentially sequestered by liver macrophages. This results in a reduction of available virus and might also increase the immune response to the vector and vector products.
Reduction of macrophage sequestration is therefore essential for efficient lentiviral liver gene therapy.
Fusions were made of Autographa californica GP64 and the hepatocyte specific Sendai Virus envelope proteins. Lentiviral vectors were produced with either wild type GP64, Sendai-GP64, or both wild type GP64 and Sendai-GP64 and tested in vitro and in vivo for hepatocyte and macrophage gene transfer.
Sendai-GP64 pseudotyped vectors showed specific gene transfer to HepG2 hepatoma cells, with no detectable transduction of HeLa cervical carcinoma cells, and a decreased affinity for RAW mouse macrophages. Co-expression of wild type GP64 and Sendai-GP64 resulted in improved viral titers while retaining increased affinity for HepG2 cells.
In vivo, the Sendai-GP64 vectors also showed decreased transduction of murine liver macrophages.
We demonstrate reduced macrophage transduction in vitro and in vivo with GP64/Sendai chimeric envelope proteins.
PMCID: PMC2762966  PMID: 19811629
18.  Refinement of lentiviral vector for improved RNA processing and reduced rates of self inactivation repair 
BMC Biotechnology  2009;9:86.
Lentiviral gene therapy vectors are now finding clinical application. In order to fully exploit their potential it is important that vectors are made as efficient and as safe as possible. Accordingly, we have modified a previously reported vector to improve RNA processing, minimise Human Immunodeficiency Virus Type-1 (HIV-1) sequence content and reduce repair of the self inactivating (SIN) deletion.
HIV-1 sequence in the vector was reduced by substituting the polyadenylation signal with a heterologous signal. Mutation of splice donor sites was undertaken to prevent the majority of splicing within the vector genomic RNA. In addition, a number of other sequences within the vector were deleted. The combination of these modifications was able to significantly reduce the rates of both vector mobilisation and repair of the self inactivating deletion after two rounds of marker rescue.
RNA processing can be improved by mutation of the major and minor HIV-1 splice donor sites in the vector. In addition the rate of vector mobilisation and repair of SIN vectors can be successfully reduced by careful vector design that reduces homology between the 5' and 3' long terminal repeats (LTRs) to a minimum.
PMCID: PMC2765960  PMID: 19811661
19.  Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9 
BMC Biotechnology  2009;9:84.
Both thermotherapy and arsenic have been shown to be active against a broad spectrum of cancers. To reduce the limitations of conventional thermotherapy, improve therapeutic anticancer activity, reduce the toxicity of arsenic on normal tissue, and increase tissue-specific delivery, we prepared a nanosized As2O3/Fe3O4 complex (Fe3O4 magnetic nanoparticles encapsulated in As2O3). We assessed the thermodynamic characteristics of this complex and validated the hyperthermia effect, when combined with magnetic fluid hyperthermia (MFH), on xenograft HeLa cells (human cervical cancer cell line) in nude mice. We also measured the effect on the expression of CD44v6, VEGF-C, and MMP-9 which were related to cancer and/or metastasis.
The nanosized As2O3/Fe3O4 particles were approximately spherical, had good dispersibility as evidenced by TEM, and an average diameter of about 50 nm. With different concentrations of the nanosized As2O3/Fe3O4 complex, the correspondingsuspension of magnetic particles could attain a steady temperature ranging from 42°C to 65°C when placed in AMF for 40 min. Thermochemotherapy with the nanosized As2O3/Fe3O4 complex showed a significant inhibitory effect on the mass (88.21%) and volume (91.57%) of xenograft cervical tumors (p < 0.05 for each measurement, compared with control). In addition, thermochemotherapy with the nanosized As2O3/Fe3O4 complex significantly inhibited the expression of CD44v6, VEGF-C, and MMP-9 mRNA (p < 0.05 for each).
As2O3/Fe3O4 complex combined with MFH had is a promising technique for the minimally invasive elimination of solid tumors and may be have anticancerometastasic effect by inhibiting the expression of CD44v6, VEGF-C, and MMP-9.
PMCID: PMC2765420  PMID: 19804631
20.  MALS: an efficient strategy for multiple site-directed mutagenesis employing a combination of DNA amplification, ligation and suppression PCR 
BMC Biotechnology  2009;9:83.
Multiple approaches for the site-directed mutagenesis (SDM) have been developed. However, only several of them are designed for simultaneous introduction of multiple nucleotide alterations, and these are time consuming. In addition, many of the existing multiple SDM methods have technical limitations associated with type and number of mutations that can be introduced, or are technically demanding and require special chemical reagents.
In this study we developed a quick and efficient strategy for introduction of multiple complex mutations in a target DNA without intermediate subcloning by using a combination of connecting SDM and suppression PCR. The procedure consists of sequential rounds, with each individual round including PCR amplification of target DNA with two non-overlapping pairs of oligonucleotides. The desired mutation is incorporated at the 5' end of one or both internal oligonucleotides. DNA fragments obtained during amplification are mixed and ligated. The resulting DNA mixture is amplified with external oligonucleotides that act as suppression adapters. Suppression PCR limits amplification to DNA molecules representing full length target DNA, while amplification of other types of molecules formed during ligation is suppressed. To create additional mutations, an aliquot of the ligation mixture is then used directly for the next round of mutagenesis employing internal oligonucleotides specific for another region of target DNA.
A wide variety of complex multiple mutations can be generated in a short period of time. The procedure is rapid, highly efficient and does not require special chemical reagents. Thus, MALS represents a powerful alternative to the existing methods for multiple SDM.
PMCID: PMC2759926  PMID: 19778447
21.  Integrating human stem cell expansion and neuronal differentiation in bioreactors 
BMC Biotechnology  2009;9:82.
Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons.
The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time.
Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process.
The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors.
PMCID: PMC2759925  PMID: 19772662
22.  A combination of transposable elements and magnetic cell sorting provides a very efficient transgenesis system for chicken primary erythroid progenitors 
BMC Biotechnology  2009;9:81.
Stable transgenesis is an undeniable key to understanding any genetic system. Retrovirus-based insertional strategies, which feature several technical challenges when they are used, are often limited to one particular species, and even sometimes to a particular cell type as the infection depends on certain cellular receptors. A universal-like system, which would allow both stable transgene expression independent of the cell type and an efficient sorting of transfected cells, is required when handling cellular models that are incompatible with retroviral strategies.
We report here on the combination of a stable insertional transgenesis technique, based on the Tol2 transposon system together with the magnetic cell sorting (MACS) technique, which allows specific selection of cells carrying the transgene in an efficient, reliable and rapid way.
This new Tol2/MACS system leads to stable expression in a culture of primary chicken erythroid cells highly enriched in cells expressing the transgene of interest. This system could be used in a wide variety of vertebrate species.
PMCID: PMC2753566  PMID: 19765302
23.  Monodispersity of recombinant Cre recombinase correlates with its effectiveness in vivo 
BMC Biotechnology  2009;9:80.
Cre recombinase is a common reagent used for the in vivo on/off switching of the expression of target genes flanked by loxP sites. In particular, recombinant TAT-Cre fusion constructs purified from bacteria have been used to promote the cell uptake of the enzyme. However, the recovery of active TAT-Cre remains a demanding process and its specific activity varies significantly among batches, making difficult data comparison.
We noticed a strong correlation between recombinase activity and enzyme monodispersity. The existence of such correlation enabled us to indirectly monitor the TAT-Cre recombinase activity during the multi-step purification process by measuring its monodispersity, a parameter detectable by means of a spectrofluorimetric assay that allows the calculation of the Aggregation Index (AI) in an easy and rapid way. AI values were recorded after each purification passage to identify the critical steps and to choose optimal alternatives for chromatographic conditions, desalting procedures, and protocols for bacterial endotoxin removal. Furthermore, the effect of metal ions and temperature on TAT-Cre aggregation and inactivation was characterized in vitro. Finally, we optimized the enzyme delivery protocol in vivo by following the accumulation tuning of the reporter protein β-catenin.
A rational purification protocol for TAT-Cre has been developed by choosing the options that minimize the enzyme aggregation. Our data suggest that AI measurement should support the optimization of any protocol aiming at the recovery of monodispersed protein.
PMCID: PMC2755479  PMID: 19747375
24.  Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens 
BMC Biotechnology  2009;9:79.
Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds.
Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts.
The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.
PMCID: PMC2755478  PMID: 19747368
25.  New stably transfected bioluminescent cells expressing FLAG epitope-tagged estrogen receptors to study their chromatin recruitment 
BMC Biotechnology  2009;9:77.
Biological actions of estrogens are mediated by the two specific estrogen receptors ERα and ERβ. However, due to the absence of adequate cellular models, their respective transcriptional activities are still poorly understood. For instance, the evaluation of such differing properties on the transcription of responsive genes using ChIP experiments was hindered by the deficiency of cells exhibiting the same genotypic background and properties but expressing only one of the ERs. We describe here the generation of such cells, using an estrogen receptor negative HELN cell line that was derived from HeLa cells stably transfected with an ERE-driven luciferase plasmid. These HELN-Fα and HELN-Fβ cell lines stably express either the alpha or beta (full length) estrogen receptor tagged with the FLAG epitope. The use of antibodies directed against the FLAG epitope allowed a direct comparative evaluation of the respective actions of both ERs using ChIP.
HELN-Fα and HELN-Fβ cell lines were found to express comparable levels of their corresponding tagged receptors with a Kd for estradiol binding of 0.03 and 0.27 nM respectively. The presence of a stably transfected ERE-driven luciferase plasmid in these cells allowed the direct evaluation of the transcriptional activity of both tagged receptors, using natural or synthetic estrogens. FLAG-ERα and FLAG-ERβ were found to exhibit similar transcriptional activity, as indicated by a kinetic evaluation of the transcriptional activation of the luciferase gene during 10 hrs of treatment with estradiol. The validity of these model cells was further confirmed by the predictable transcriptional regulations measured upon treatments with ERα or ERβ specific ligands. The similar immunoprecipitation efficiency of both tagged receptors by an anti-FLAG antibody allowed the assessment of their kinetic recruitment on the synthetic luciferase promoter (containing an estrogen response element) by ChIP assays during 8 hours. A biphasic curve was obtained for both FLAG-ERα and FLAG-ERβ, with a peak occurring either at 2 hr or at 1 hr, respectively, and a second one following 4 hr of E2 stimulation in both cases. In MCF-7 cells, the recruitment of ERα also exhibited a biphasic behaviour; with the second peak however not so important than in the HeLa cell lines.
In HELN derived cell lines, no fundamental differences between kinetics were observed during 8 hours for FLAG-ERα and FLAG-ERβ, as well as for polymerase II recruitment. However, the relative importance of recruitment between 1 hr and 4 hr was found to be different in HeLa cell line expressing exogenous tagged ERα and in MCF-7 cell line expressing endogenous ER.
PMCID: PMC2749030  PMID: 19737428

Results 1-25 (102)