Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Baculovirus display of single chain antibody (scFv) using a novel signal peptide 
BMC Biotechnology  2010;10:80.
Cells permissive to virus can become refractory to viral replication upon intracellular expression of single chain fragment variable (scFv) antibodies directed towards viral structural or regulatory proteins, or virus-coded enzymes. For example, an intrabody derived from MH-SVM33, a monoclonal antibody against a conserved C-terminal epitope of the HIV-1 matrix protein (MAp17), was found to exert an inhibitory effect on HIV-1 replication.
Two versions of MH-SVM33-derived scFv were constructed in recombinant baculoviruses (BVs) and expressed in BV-infected Sf9 cells, N-myristoylation-competent scFvG2/p17 and N-myristoylation-incompetent scFvE2/p17 protein, both carrying a C-terminal HA tag. ScFvG2/p17 expression resulted in an insoluble, membrane-associated protein, whereas scFvE2/p17 was recovered in both soluble and membrane-incorporated forms. When coexpressed with the HIV-1 Pr55Gag precursor, scFvG2/p17 and scFvE2/p17 did not show any detectable negative effect on virus-like particle (VLP) assembly and egress, and both failed to be encapsidated in VLP. However, soluble scFvE2/p17 isolated from Sf9 cell lysates was capable of binding to its specific antigen, in the form of a synthetic p17 peptide or as Gag polyprotein-embedded epitope. Significant amounts of scFvE2/p17 were released in the extracellular medium of BV-infected cells in high-molecular weight, pelletable form. This particulate form corresponded to BV particles displaying scFvE2/p17 molecules, inserted into the BV envelope via the scFv N-terminal region. The BV-displayed scFvE2/p17 molecules were found to be immunologically functional, as they reacted with the C-terminal epitope of MAp17. Fusion of the N-terminal 18 amino acid residues from the scFvE2/p17 sequence (N18E2) to another scFv recognizing CD147 (scFv-M6-1B9) conferred the property of BV-display to the resulting chimeric scFv-N18E2/M6.
Expression of scFvE2/p17 in insect cells using a BV vector resulted in baculoviral progeny displaying scFvE2/p17. The function required for BV envelope incorporation was carried by the N-terminal octadecapeptide of scFvE2/p17, which acted as a signal peptide for BV display. Fusion of this peptide to the N-terminus of scFv molecules of interest could be applied as a general method for BV-display of scFv in a GP64- and VSV-G-independent manner.
PMCID: PMC3002913  PMID: 21092083
2.  Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients 
BMC Biotechnology  2008;8:16.
The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting autoantibodies, which involves coating the microtiter plate with the tumor associated antigen (TAA) of interest and allowing serum antibodies to bind. The patient's sample is directly in contact with the coating antigen so the protein used for coating must be pure to avoid non-specific binding. In this study, a simplified method to selectively and specifically immobilize TAAs onto microtiter plates in order to detect circulating autoantibodies in cancer patients without prior purification process was described. Wild type full-length p53 protein was produced in fusion with biotin carboxyl carrier peptide (BCCP) or hexahistidine [(His)6] using pAK400 and pET15b(+) vectors, respectively. The recombinant p53 fusion protein produced was then subjected to react with either a commercial p53 monoclonal antibody (mAb) or sera from lung cancer patients and healthy volunteers in an enzyme-linked immunosorbent assay (ELISA) format.
Both of the immobilized p53 fusion proteins as well as the purified (His)6-p53 fusion protein had a similar dose response of detection to a commercial p53 mAb (DO7). When the biotinylated p53-BCCP fusion protein was used as an antigen to detect p53 autoantibodies in clinical samples, the result showed that human serum reacted strongly to avidin-coated microwell even in the absence of the biotinylated p53-BCCP fusion protein, thus compromised its ability to differentiate weakly positive sera from those that were negative. In contrast, the (His)6-p53 protein immobilized directly onto Ni+ coated microplate was able to identify the p53 autoantibody positive serum. In addition, its reactivity to clinical serum samples highly correlated with those obtained from using purified p53 as an antigen (R = 0.9803, p < 0.0001). Moreover, this directly immobilized p53 antigen can clearly differentiate p53 autoantibody positive sera in cancer patients from healthy volunteers' sera.
A method of coating directly and specifically TAAs onto a microtiter plate without the purification processes was developed in this study. Although in this study only one tumor antigen was examined, the simplicity and the ability of coated antigens to identify p53 specific autoantibodies in serum accurately might enable a larger panel of TAAs specific autoantibodies to be explored as serological markers for cancer.
PMCID: PMC2275332  PMID: 18284706
3.  Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells 
BMC Biotechnology  2008;8:5.
Expression of intracellular antibodies (intrabodies) has become a broadly applicable technology for generation of phenotypic knockouts in vivo. The method uses surface depletion of cellular membrane proteins to examine their biological function. In this study, we used this strategy to block the transport of cell surface molecule CD147 to the cell membrane. Phage display technology was introduced to generate the functional antibody fragment to CD147, and we subsequently constructed a CD147-specific scFv that was expressed intracellularly and retained in the endoplasmic reticulum by adenoviral gene transfer.
The recombinant antibody fragments, Fab and scFv, of the murine monoclonal antibody (clone M6-1B9) reacted specifically to CD147 by indirect enzyme-linked immunosorbent assays (ELISA) using a recombinant CD147-BCCP as a target. This indicated that the Fab- and scFv-M6-1B9 displaying on phage surfaces were correctly folded and functionally active. We subsequently constructed a CD147-specific scFv, scFv-M6-1B9-intrabody, in 293A cells. The expression of CD147 on 293A cell surface was monitored at 36 h after transduction by flow cytometry and demonstrated remarkable reduction. Colocalization of scFv-M6-1B9 intrabody with CD147 in the ER network was depicted using a 3D deconvolution microscopy system.
The results suggest that our approach can generate antibody fragments suitable for decreasing the expression of CD147 on 293A cells. This study represents a step toward understanding the role of the cell surface protein, CD147.
PMCID: PMC2258298  PMID: 18226275

Results 1-3 (3)