PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  A novel Poly(ε-caprolactone)-Pluronic-Poly(ε-caprolactone) grafted Polyethyleneimine(PCFC-g-PEI), Part 1, synthesis, cytotoxicity, and in vitro transfection study 
BMC Biotechnology  2009;9:65.
Background
Polyethyleneimine (PEI), a cationic polymer, is one of the successful and widely used vectors for non-viral gene transfection in vitro. However, its in vivo application was greatly limited due to its high cytotoxicity and short duration of gene expression. To improve its biocompatibility and transfection efficiency, PEI has been modified with PEG, folic acid, and chloroquine in order to improve biocompatibility and enhance targeting.
Results
Poly(ε-caprolactone)-Pluronic-Poly(ε-caprolactone) (PCFC) was synthesized by ring-opening polymerization, and PCFC-g-PEI was obtained by Michael addition reaction with GMA-PCFC-GMA and polyethyleneimine (PEI, 25 kD). The prepared PCFC-g-PEI was characterized by 1H-NMR, SEC-MALLS. Meanwhile, DNA condensation, DNase I protection, the particle size and zeta potential of PCFC-g-PEI/DNA complexes were also determined. According to the results of flow cytometry and MTT assay, the synthesized PCFC-g-PEI, with considerable transfection efficiency, had obviously lower cytotoxicity against 293 T and A549 cell lines compared with that of PEI 25 kD.
Conclusion
The cytotoxicity and in vitro transfection study indicated that PCFC-g-PEI copolymer prepared in this paper was a novel gene delivery system with lower cytotoxicity and considerable transfection efficiency compared with commercial PEI (25 kD).
doi:10.1186/1472-6750-9-65
PMCID: PMC2717081  PMID: 19607728
2.  In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) copolymer 
BMC Biotechnology  2009;9:8.
Background
Most conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems are designed to deliver drugs at predetermined rates for predefined periods at the target organ and overcome the shortcomings of conventional drug formulations therefore could diminish the side effects and improve the life quality of the patients. Thus, a suitable controlled drug delivery system is extremely important for chemotherapy.
Results
A novel biodegradable thermosensitive composite hydrogel, based on poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) and Pluronic F127 copolymer, was successfully prepared in this work, which underwent thermosensitive sol-gel-sol transition. And it was flowing sol at ambient temperature but became non-flowing gel at body temperature. By varying the composition, sol-gel-sol transition and in vitro drug release behavior of the composite hydrogel could be adjusted. Cytotoxicity of the composite hydrogel was conducted by cell viability assay using human HEK293 cells. The 293 cell viability of composite hydrogel copolymers were yet higher than 71.4%, even when the input copolymers were 500 μg per well. Vitamin B12 (VB12), honokiol (HK), and bovine serum albumin (BSA) were used as model drugs to investigate the in vitro release behavior of hydrophilic small molecular drug, hydrophobic small molecular drug, and protein drug from the composite hydrogel respectively. All the above-mentioned drugs in this work could be released slowly from composite hydrogel in an extended period. Chemical composition of composite hydrogel, initial drug loading, and hydrogel concentration substantially affected the drug release behavior. The higher Pluronic F127 content, lower initial drug loading amount, or lower hydrogel concentration resulted in higher cumulative release rate.
Conclusion
The results showed that composite hydrogel prepared in this paper were biocompatible with low cell cytotoxicity, and the drugs in this work could be released slowly from composite hydrogel in an extended period, which suggested that the composite hydrogel might have great potential applications in biomedical fields.
doi:10.1186/1472-6750-9-8
PMCID: PMC2654890  PMID: 19210779
3.  Preparation of alginate coated chitosan microparticles for vaccine delivery 
BMC Biotechnology  2008;8:89.
Background
Absorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine.
Results
The prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE) of 60% and loading capacity (LC) of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv) was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM), the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR.
Conclusion
The prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan microparticles and could effectively protect model protein (BSA) from degradation in acidic medium in vitro for at least 2 h. In all, the prepared alginate coated chitosan microparticles might be an effective vehicle for oral administration of antigens.
doi:10.1186/1472-6750-8-89
PMCID: PMC2603011  PMID: 19019229

Results 1-3 (3)