Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Development of a diagnostic method for neosporosis in cattle using recombinant Neospora caninum proteins 
BMC Biotechnology  2012;12:19.
Neosporosis is an infectious disease primarily of cattle and dogs, caused by intracellular parasite, Neospora caninum. Neosporosis appears to be a major cause of abortion in dairy cattle worldwide and causes to huge economic loss to dairy industry.
Recombinant surface associated antigen 1 (NcSAG1), NcSAG1 related sequence 2 (NcSRS2) and the dense granule antigen 2 (NcGRA2) of N. caninum were expressed either in silkworm or in Escherichia coli and purified. The purified recombinant proteins bound to the N. caninum-specific antibodies in serum samples from infected cattle as revealed by an enzyme-linked immunosorbent assay (ELISA). By co-immobilizing these recombinant proteins, a novel indirect ELISA was developed for detection of neosporosis. With the use of 32 serum samples, comprising 12 positive serum samples and 20 negative serum samples, the sensitivity and specificity of the assay were found to be 91.7 and 100%, respectively. Seventy-two serum samples from dairy farms were also tested and one was diagnosed with neosporasis with both this method and a commercial assay.
A diagnostic method employing recombinant proteins of N. caninum was developed. The method showed high sensitivity and specificity. Diagnostic test with field serum samples suggested its applicability to the practical diagnosis of neosporosis.
PMCID: PMC3441611  PMID: 22558916
2.  Purification of functional baculovirus particles from silkworm larval hemolymph and their use as nanoparticles for the detection of human prorenin receptor (PRR) binding 
BMC Biotechnology  2011;11:60.
Baculovirus, which has a width of 40 nm and a length of 250-300 nm, can display functional peptides, receptors and antigens on its surface by their fusion with a baculovirus envelop protein, GP64. In addition, some transmembrane proteins can be displayed without GP64 fusion, using the native transmembrane domains of the baculovirus. We used this functionality to display human prorenin receptor fused with GFPuv (GFPuv-hPRR) on the surface of silkworm Bombyx mori nucleopolyhedrovirus (BmNPV) and then tested whether these baculovirus particles could be used to detect protein-protein interactions.
BmNPV displaying GFPuv-hPRR (BmNPV-GFPuv-hPRR) was purified from hemolymph by using Sephacryl S-1000 column chromatography in the presence of 0.01% Triton X-100. Its recovery was 86% and the final baculovirus particles number was 4.98 × 108 pfu. Based on the results of enzyme-linked immunosorbent assay (ELISA), 3.1% of the total proteins in BmNPV-GFPuv-hPRR were GFPuv-hPRR. This value was similar to that calculated from the result of western blot by a densitometry (2.7%). To determine whether BmNPV-GFPuv-hPRR particles were bound to human prorenin, ELISA results were compared with those from ELISAs using protease negative BmNPV displaying β1,3-N-acetylglucosaminyltransferase 2 fused with the gene encoding GFPuv (GGT2) (BmNPV-CP--GGT2) particles, which do not display hPRR on their surfaces.
The display of on the surface of the BmNPV particles will be useful for the detection of protein-protein interactions and the screening of inhibitors and drugs in their roles as nanobioparticles.
PMCID: PMC3118113  PMID: 21635720
BmNPV; human prorenin receptor; silkworm; display; ELISA
3.  High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV) displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization 
BMC Biotechnology  2009;9:55.
Budded baculoviruses are utilized for vaccine, the production of antibody and functional analysis of transmembrane proteins. In this study, we tried to produce and purify the recombinant Bombyx mori nucleopolyhedrovirus (rBmNPV-hPRR) that displayed human (pro)renin receptor (hPRR) connected with FLAG peptide sequence on its own surface. These particles were used for further binding analysis of hPRR to human prorenin. The rBmNPV-hPRR was produced in silkworm larvae and purified from its hemolymph using size exclusion chromatography (SEC).
A rapid method of BmNPV titer determination in hemolymph was performed using quantitative real-time PCR (Q-PCR). A correlation coefficient of BmNPV determination between end-point dilution and Q-PCR methods was found to be 0.99. rBmNPV-hPRR bacmid-injected silkworm larvae produced recombinant baculovirus of 1.31 × 108 plaque forming unit (pfu) in hemolymph, which was 2.8 × 104 times higher than transfection solution in Bm5 cells. Its purification yield by Sephacryl S-1000 SF column chromatography was 264 fold from larval hemolymph at 4 days post-injection (p.i.), but 35 or 39 fold at 4.5 or 5 days p.i., respectively. Protein patterns of rBmNPV-hPRR purified at 4 and 5 days were the same and ratio of envelope proteins (76, 45 and 35 kDa) to VP39, one of nucleocapsid proteins, increased at 5 days p.i. hPRR was detected in only purified rBmNPV-hPRR at 5 days p.i..
The successful purification of rBmNPV-hPRR indicates that baculovirus production using silkworm larvae and its purification from hemolymph by Sephacryl S-1000 SF column chromatography can provide an economical approach in obtaining the purified BmNPV stocks with high titer for large-scale production of hPRR. Also, it can be utilized for further binding analysis and screening of inhibitors of hPRR.
PMCID: PMC2703641  PMID: 19523201
4.  Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat α2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae 
BMC Biotechnology  2009;9:54.
Sialic acid is a deoxy uronic acid with a skeleton of nine carbons which is mostly found on cell surface in animals. This sialic acid on cell surface performs various biological functions by acting as a receptor for microorganisms, viruses, toxins, and hormones; by masking receptors; and by regulating the immune system. In order to synthesize an artificial sialoglycoprotein, we developed a large-scale production of rat α2,6-sialyltransferase (ST6Gal1). The ST6Gal1 was expressed in fifth instar silkworm larval hemolymph using recombinant both cysteine protease- and chitinase-deficient Bombyx mori nucleopolyhedrovirus (BmNPV-CP--Chi-) bacmid. The expressed ST6Gal1 was purified, characterized and used for sialylation of asialoglycopolypeptide. We tested the inhibitory effect of the synthesized α2,6-sialoglycopolypeptide on hemagglutination by Sambucus nigra (SNA) lectin.
FLAG-tagged recombinant ST6Gal1 was expressed efficiently and purified by precipitation with ammonium sulphate followed by affinity chromatography on an anti-FLAG M2 column, generating 2.2 mg purified fusion protein from only 11 silkworm larvae, with a recovery yield of 64%. The purified ST6Gal1 was characterized and its N-glycan patterns were found to be approximately paucimannosidic type by HPLC mapping method. Fluorescently-labelled N-acetyllactosamine (LacNAc) glycoside containing dansyl group was synthesized chemo-enzymatically as high-sensitivity acceptor substrate for ST6Gal1. The acceptor substrate specificity of the enzyme was similar to that of rat liver ST6Gal1. The fluorescent glycoside is useful as a substrate for a highly sensitive picomole assay of ST6Gal1. Asialoglycopolypeptide was regioselectively and quantitatively sialylated by catalytic reaction at the terminal Gal residue to obtain α2,6-sialoglycopolypeptide using ST6Gal1. The α2,6-sialoglycopolypeptide selectively inhibited hemagglutination induced by Sambucus nigra (SNA) lectin, showing about 780-fold higher affinity than the control fetuin. Asialoglycopolypeptide and γ-polyglutamic acid did not affect SNA lectin-mediated hemagglutination.
The recombinant ST6Gal1 from a silkworm expression system is useful for the sialylation of asialoglycopeptide. The sialylated glycoprotein is a valuable tool for investigating the molecular mechanisms of biological and physiological events, such as cell-cell recognition and viral entry during infection.
PMCID: PMC3224744  PMID: 19500344

Results 1-4 (4)