PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli 
BMC Biotechnology  2011;11:126.
Background
Anthrax is caused by the bacterium Bacillus anthracis and is regarded as one of the most prominent bioterrorism threats. Anthrax toxicity is induced by the tripartite toxin complex, composed of the receptor-binding anthrax protective antigen and the two enzymatic subunits, lethal factor and edema factor. Recombinant lactobacilli have previously been used to deliver antibody fragments directed against surface epitopes of a variety of pathogens, including Streptococcus mutans, Porphyromonas gingivalis, and rotavirus. Here, we addressed whether or not anthrax toxins could be targeted and neutralised in the gastrointestinal tract by lactobacilli producing recombinant antibody fragments as a model system for toxin neutralisation in the gastrointestinal lumen.
Results
The neutralising anti-PA scFv, 1H, was expressed in L. paracasei as a secreted protein, a cell wall-anchored protein or both secreted and wall-anchored protein. Cell wall display on lactobacilli and PA binding of the anchored constructs was confirmed by flow cytometry analysis. Binding of secreted or attached scFv produced by lactobacilli to PA were verified by ELISA. Both construct were able to protect macrophages in an in vitro cytotoxicity assay. Finally, lactobacilli producing the cell wall attached scFv were able to neutralise the activity of anthrax edema toxin in the GI tract of mice, in vivo.
Conclusion
We have developed lactobacilli expressing a neutralising scFv fragment against the PA antigen of the anthrax toxin, which can provide protection against anthrax toxins both in vitro and in vivo. Utilising engineered lactobacilli therapeutically for neutralising toxins in the gastrointestinal tract can potential be expanded to provide protection against a range of additional gastrointestinal pathogens. The ability of lactobacilli to colonise the gastrointestinal tract may allow the system to be used both prophylactically and therapeutically.
doi:10.1186/1472-6750-11-126
PMCID: PMC3295704  PMID: 22185669
2.  Lactobacillli expressing llama VHH fragments neutralise Lactococcus phages 
BMC Biotechnology  2007;7:58.
Background
Bacteriophages infecting lactic acid bacteria (LAB) are widely acknowledged as the main cause of milk fermentation failures. In this study, we describe the surface-expression as well as the secretion of two functional llama heavy-chain antibody fragments, one binding to the major capsid protein (MCP) and the other to the receptor-binding proteins (RBP) of the lactococcal bacteriophage p2, by lactobacilli in order to neutralise lactococcal phages.
Results
The antibody fragment VHH5 that is directed against the RBP, was fused to a c-myc tag and expressed in a secreted form by a Lactobacillus strain. The fragment VHH2 that is binding to the MCP, was fused to an E-tag and anchored on the surface of the lactobacilli. Surface expression of VHH2 was confirmed by flow cytometry using an anti-E-tag antibody. Efficient binding of both the VHH2 and the secreted VHH5 fragment to the phage antigens was shown in ELISA. Scanning electron microscopy showed that lactobacilli expressing VHH2 anchored at their surface were able to bind lactococcal phages. A neutralisation assay also confirmed that the secreted VHH5 and the anchored VHH2 fragments prevented the adsorption of lactococcal phages to their host cells.
Conclusion
Lactobacilli were able to express functional VHH fragments in both a secreted and a cell surface form and reduced phage infection of lactococcal cells. Lactobacilli expressing llama heavy-chain antibody fragments represent a novel way to limit phage infection.
doi:10.1186/1472-6750-7-58
PMCID: PMC2039727  PMID: 17875214
3.  In vivo mucosal delivery of bioactive human interleukin 1 receptor antagonist produced by Streptococcus gordonii 
BMC Biotechnology  2003;3:15.
Background
Interleukin-1 (IL-1) is a cytokine involved in the initiation and amplification of the defence response in infectious and inflammatory diseases. IL-1 receptor antagonist (IL-1ra) is an inactive member of the IL-1 family and represents one of the most potent mechanisms for controlling IL-1-dependent inflammation. IL-1ra has proven effective in the therapy of acute and chronic inflammatory diseases in experimental animal models and also in preliminary clinical trials. However, optimisation of therapeutic schedules is still needed. For instance, the use of drug delivery systems targeting specific mucosal sites may be useful to improve topical bioavailability and avoid side effects associated with systemic administration.
Results
In order to develop systems for the delivery of IL-1ra to mucosal target sites, a Streptococcus gordonii strain secreting human IL-1ra was constructed. The recombinant IL-1ra produced by S. gordonii was composed of the four amino acid residues RVFP of the fusion partner at the N-terminus, followed by the mature human IL-1ra protein. RFVP/IL-1ra displayed full biological activity in vitro in assays of inhibition of IL-1β-induced lymphocyte proliferation and was released by recombinant S. gordonii in vivo both at the vaginal and the gastrointestinal mucosa of mice. RFVP/IL-1ra appeared beneficial in the model of ulcerative colitis represented by IL-2-/- mice (knock-out for the interleukin-2 gene), as shown by the body weight increase of IL-2-/- mice locally treated with S. gordonii producing RFVP/IL-1ra.
Conclusions
These results indicate that recombinant S. gordonii can be successfully used as a delivery system for the selective targeting of mucosal surfaces with therapeutic proteins.
doi:10.1186/1472-6750-3-15
PMCID: PMC222906  PMID: 13129437

Results 1-3 (3)