Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection 
BMC Biotechnology  2008;8:34.
The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv) that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings.
After five rounds of phage selection using a constitutively activated mutant of RhoB (RhoBQ63L), three scFvs (A8, C1 and D11) were selected for subsequent analysis. Further biochemical characterization was pursued for the single clone, C1, exhibiting an scFv structure. C1 was selective for the GTP-bound form of RhoA, RhoB, as well as RhoC, and failed to recognize GTP-loaded Rac1 or Cdc42, two other members of the Rho family. To enhance its production, soluble C1 was expressed in fusion with the N-terminal domain of phage protein pIII (scFv C1-N1N2), it appeared specifically associated with GTP-loaded recombinant RhoA and RhoB via immunoprecipitation, and endogenous activated Rho in HeLa cells as determined by immunofluorescence.
We identified an antibody, C1-N1N2, specific for the GTP-bound form of RhoB from a phage library, and confirmed its specificity towards GTP-bound RhoA and RhoC, as well as RhoB. The success of C1-N1N2 in discriminating activated Rho in immunofluorescence studies implies that this new tool, in collaboration with currently used RhoA and B antibodies, has the potential to analyze Rho activation in cell function and tumor development.
PMCID: PMC2323369  PMID: 18377644
2.  Reversible inactivation of the transcriptional function of P53 protein by farnesylation 
BMC Biotechnology  2006;6:26.
The use of integrating viral vectors in Gene therapy clinical trials has pointed out the problem of the deleterous effect of the integration of the ectopic gene to the cellular genome and the safety of this strategy. We proposed here a way to induce the death of gene modified cells upon request by acting on a pro-apoptotic protein cellular localization and on the activation of its apoptotic function.
We constructed an adenoviral vector coding a chimeric p53 protein by fusing p53 sequence with the 21 COOH term amino acids sequence of H-Ras. Indeed, the translation products of Ras genes are cytosolic proteins that become secondarily associated with membranes through a series of post-translational modifications initiated by a CAAX motif present at the C terminus of Ras proteins. The chimeric p53HRCaax protein was farnesylated efficiently in transduced human osteosarcoma p53-/- cell line. The farnesylated form of p53 resided mainly in the cytosol, where it is non-functional. Farnesyl transferase inhibitors (FTIs) specifically inhibited farnesyl isoprenoid lipid modification of proteins. Following treatment of the cells with an FTI, p53HRCaax underwent translocation into the nucleus where it retained transcription factor activity. Shifting p53 into the nucleus resulted in the induction of p21waf1/CIP1 and Bax transcription, cell growth arrest, caspase activation and apoptosis.
Artificial protein farnesylation impaired the transcriptional activity of p53. This could be prevented by Farnesyl transferase inhibition. These data highlight the fact that the artificial prenylation of proteins provides a novel system for controlling the function of a transactivating factor.
PMCID: PMC1481662  PMID: 16732889
3.  Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors 
BMC Biotechnology  2004;4:16.
Polycistronic retroviral vectors that contain several therapeutic genes linked via internal ribosome entry sites (IRES), provide new and effective tools for the co-expression of exogenous cDNAs in clinical gene therapy protocols. For example, tricistronic retroviral vectors could be used to genetically modify antigen presenting cells, enabling them to express different co-stimulatory molecules known to enhance tumor cell immunogenicity.
We have constructed and compared different retroviral vectors containing two co-stimulatory molecules (CD70, CD80) and selectable marker genes linked to different IRES sequences (IRES from EMCV, c-myc, FGF-2 and HTLV-1). The tricistronic recombinant amphotropic viruses containing the IRES from EMCV, FGF-2 or HTLV-1 were equally efficient in inducing the expression of an exogenous gene in the transduced murine or human cells, without displaying any cell type specificity. The simultaneous presence of several IRESes on the same mRNA, however, can induce the differential expression of the various cistrons. Here we show that the IRESes of HTLV-1 and EMCV interfere with the translation induced by other IRESes in mouse melanoma cells. The IRES from FGF-2 did however induce the expression of exogenous cDNA in human melanoma cells without any positive or negative regulation from the other IRESs present within the vectors. Tumor cells that were genetically modified with the tricistronic retroviral vectors, were able to induce an in vivo anti-tumor immune response in murine models.
Translation of the exogenous gene is directed by the IRES and its high level of expression not only depends on the type of cell that is transduced but also on the presence of other genetic elements within the vector.
PMCID: PMC514710  PMID: 15279677

Results 1-3 (3)