PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (60)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Diffusion-controlled reaction rates for two active sites on a sphere 
BMC Biophysics  2014;7:3.
Background
The diffusion-limited reaction rate of a uniform spherical reactant is generalized to anisotropic reactivity. Previous work has shown that the protein model of a uniform sphere is unsatisfactory in many cases. Competition of ligands binding to two active sites, on a spherical enzyme or cell is studied analytically.
Results
The reaction rate constant is given for two sites at opposite ends of the species of interest. This is compared with twice the reaction rate for a single site. It is found that the competition between sites lowers the reaction rate over what is expected for two sites individually. Competition between sites does not show up, until the site half angle is greater than 30 degrees.
Conclusions
Competition between sites is negligible until the site size becomes large. The competitive effect grows as theta becomes large. The maximum effect is given for theta = pi/2.
doi:10.1186/2046-1682-7-3
PMCID: PMC4058695  PMID: 24982756
2.  Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage 
BMC Biophysics  2014;7:2.
Background
Viroids are the smallest pathogens of plants. To date the structural and conformational details of the cleavage of Avocado sunblotch viroid (ASBVd) and the catalytic role of Mg2+ ions in efficient self-cleavage are of crucial interest.
Results
We report the first Raman characterization of the structure and activity of ASBVd, for plus and minus viroid strands. Both strands exhibit a typical A-type RNA conformation with an ordered double-helical content and a C3′-endo/anti sugar pucker configuration, although small but specific differences are found in the sugar puckering and base-stacking regions. The ASBVd(-) is shown to self-cleave 3.5 times more actively than ASBVd(+). Deuteration and temperature increase perturb differently the double-helical content and the phosphodiester conformation, as revealed by corresponding characteristic Raman spectral changes. Our data suggest that the structure rigidity and stability are higher and the D2O accessibility to H-bonding network is lower for ASBVd(+) than for ASBVd(-). Remarkably, the Mg2+-activated self-cleavage of the viroid does not induce any significant alterations of the secondary viroid structure, as evidenced from the absence of intensity changes of Raman marker bands that, however exhibit small but noticeable frequency downshifts suggesting several minor changes in phosphodioxy, internal loops and hairpins of the cleaved viroids.
Conclusions
Our results demonstrate the sensitivity of Raman spectroscopy in monitoring structural and conformational changes of the viroid and constitute the basis for further studies of its interactions with therapeutic agents and cell membranes.
doi:10.1186/2046-1682-7-2
PMCID: PMC3994434  PMID: 24655924
Viroid; RNA conformation; Self-cleavage activity; D2O perturbation; Temperature unfolding; Raman spectroscopy
3.  Investigation of nanoscale structural alterations of cell nucleus as an early sign of cancer 
BMC Biophysics  2014;7:1.
Background
The cell and tissue structural properties assessed with a conventional bright-field light microscope play a key role in cancer diagnosis, but they sometimes have limited accuracy in detecting early-stage cancers or predicting future risk of cancer progression for individual patients (i.e., prognosis) if no frank cancer is found. The recent development in optical microscopy techniques now permit the nanoscale structural imaging and quantitative structural analysis of tissue and cells, which offers a new opportunity to investigate the structural properties of cell and tissue below 200 – 250 nm as an early sign of carcinogenesis, prior to the presence of microscale morphological abnormalities. Identification of nanoscale structural signatures is significant for earlier and more accurate cancer detection and prognosis.
Results
Our group has recently developed two simple spectral-domain optical microscopy techniques for assessing 3D nanoscale structural alterations – spectral-encoding of spatial frequency microscopy and spatial-domain low-coherence quantitative phase microscopy. These two techniques use the scattered light from biological cells and tissue and share a common experimental approach of assessing the Fourier space by various wavelengths to quantify the 3D structural information of the scattering object at the nanoscale sensitivity with a simple reflectance-mode light microscopy setup without the need for high-NA optics. This review paper discusses the physical principles and validation of these two techniques to interrogate nanoscale structural properties, as well as the use of these methods to probe nanoscale nuclear architectural alterations during carcinogenesis in cancer cell lines and well-annotated human tissue during carcinogenesis.
Conclusions
The analysis of nanoscale structural characteristics has shown promise in detecting cancer before the microscopically visible changes become evident and proof-of-concept studies have shown its feasibility as an earlier or more sensitive marker for cancer detection or diagnosis. Further biophysical investigation of specific 3D nanoscale structural characteristics in carcinogenesis, especially with well-annotated human cells and tissue, is much needed in cancer research.
doi:10.1186/2046-1682-7-1
PMCID: PMC3928095  PMID: 24507508
4.  An exact approach for studying cargo transport by an ensemble of molecular motors 
BMC Biophysics  2013;6:14.
Background
Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a number of medical maladies.
Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events that can trigger abnormalities in transport.
Results
In this article, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics of the original model can be derived.
Conclusions
Under this novel probabilistic approach new insights about the mechanisms of action of these proteins are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments.
The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has allowed to provide a possible explanation for possible mechanisms under which motor proteins could coordinate their motion.
doi:10.1186/2046-1682-6-14
PMCID: PMC3879128  PMID: 24237658
Molecular motors; Rare event detection; Markov models
5.  A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly 
BMC Biophysics  2013;6:13.
Background
Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear.
We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex.
Results
We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different.
Conclusions
Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction. However, the binding order of r-proteins in assembly does not appear to depend on these electrostatics interactions. Additionally, because thermophiles and mesophiles exhibit significantly different amino acid compositions in their sequences but not in the identities of contact sites, we conclude that this electrostatic component of interaction is insensitive to temperature and is not the determining factor differentiating the temperature sensitivity of ribosome assembly.
doi:10.1186/2046-1682-6-13
PMCID: PMC4016315  PMID: 24152303
Ribosomal assembly; Amino acid compositions; Electrostatic interactions; Adaptation; Protein/RNA contacts; Thermostability; r-proteins; 30S subunit
6.  Self-consistent field theory for the interactions between keratin intermediate filaments 
BMC Biophysics  2013;6:12.
Background
Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin.
Results
We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added.
Conclusions
These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region.
doi:10.1186/2046-1682-6-12
PMCID: PMC3848802  PMID: 24007681
Stratum corneum; Skin keratins; Intermediate filaments; Unstructured terminal domains; Bridging attraction
7.  Kinetic effects of TiO2 fine particles and nanoparticles aggregates on the nanomechanical properties of human neutrophils assessed by force spectroscopy 
BMC Biophysics  2013;6:11.
Background
Increasing applications of titanium dioxide (TiO2) fine particles (FPs) and nanoparticles (NPs) require coupled knowledge improvement concerning their biokinetic effects. Neutrophils are quickly recruited to titanium implantation areas. Neutrophils mechanical properties display a crucial role on cell physiology and immune responsive functions. Then, micro and nanomechanical characterization assessed by force spectroscopy (FS) technique has been largely applied in this field.
Results
Scanning electron microscopy (SEM) images highlighted neutrophils morphological changes along TiO2 FPs and NPs aggregates exposure time (1, 5, and 30 min) compared to controls. FS approaches showed an increasing on attraction forces to TiO2 FPs and NPs treated neutrophils. This group depicted stronger stiffness features than controls just at 1 min of exposure. Treated neutrophils showed a tendency to increase adhesive properties after 1 and 5 min of exposure. These cells maintained comparatively higher elasticity behavior for a longer time possibly due to intense phagocytosis and cell stiffness opposing to the tip indentation. Neutrophils activation caused by FPs and NPs uptake could be related to increasing dissipated energy results.
Conclusions
Mechanical modifications resulted from TiO2 FPs and NPs aggregates interaction with neutrophils showed increasing stiffness and also cell morphology alteration. Cells treatment by this metal FPs and NPs caused an increase in attractive forces. This event was mainly observed on the initial exposure times probably regarding to the interaction of neutrophils membrane and phagocytosis. Similar results were found to adhesion forces and dissipated energy outcomes. Treated cells presented comparatively higher elasticity behavior for a longer time. SEM images clearly suggested cell morphology alteration along time course probably related to activation, cytoskeleton rearrangement and phagocytosis. This scenario with increase in stiffness strongly suggests a direct relationship over neutrophil rolling, arrest, and transmigration. Scrutinizing these interactions represents an essential step to clarify the mechanisms involved on treatments containing micro and nanomaterials and their fates on the organisms.
doi:10.1186/2046-1682-6-11
PMCID: PMC3766645  PMID: 23957965
Force spectroscopy; Neutrophil nanomechanics; Titanium dioxide microparticles; Titanium dioxide nanoparticles
8.  Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies 
BMC Biophysics  2013;6:10.
Background
PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ.
Results
Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid.
Conclusions
Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences.
doi:10.1186/2046-1682-6-10
PMCID: PMC3734052  PMID: 23916145
9.  Interactions of the amphiphiles arbutin and tryptophan with phosphatidylcholine and phosphatidylethanolamine bilayers in the dry state 
BMC Biophysics  2013;6:9.
Background
Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state.
Results
Fourier-transform infrared (FTIR) spectroscopy was used to measure gel-to-liquid crystalline phase transition temperatures (Tm) of liposomes formed from phosphatidylcholine and phosphatidylethanolamine in the presence of the different additives. In anhydrous samples, both Glc and Arb strongly depressed Tm, independent of lipid composition, while Gly had no measurable effect. Trp, on the other hand, either depressed or increased Tm, depending on lipid composition. We found no evidence for strong interactions of any of the compounds with the lipid carbonyl or choline groups, while all additives except Gly seemed to interact with the phosphate groups. In the case of Arb and Glc, this also had a strong effect on the sugar OH vibrations in the FTIR spectra. In addition, vibrations from the hydrophobic indole and phenol moieties of Trp and Arb, respectively, provided evidence for interactions with the lipid bilayers.
Conclusions
The two amphiphiles Arb and Trp interact differently with dry bilayers. The interactions of Arb are dominated by contributions of the Glc moiety, while the indole governs the effects of Trp. In addition, only Trp-membrane interactions showed a strong influence of lipid composition. Further investigations, using the large structural diversity of plant amphiphiles will help to understand how their structure determines the interaction with membranes and how that influences their biological functions, for example under freezing or dehydration conditions.
doi:10.1186/2046-1682-6-9
PMCID: PMC3726346  PMID: 23879885
Amphiphiles; Arbutin; Desiccation; Fourier-transform infrared spectroscopy; Lipid phase transition; Model membranes; Tryptophan
10.  Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays 
BMC Biophysics  2013;6:8.
Background
Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface.
Results
We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface.
Conclusions
Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume.
doi:10.1186/2046-1682-6-8
PMCID: PMC3694035  PMID: 23758982
11.  Activation of signaling receptors: do ligands bind to receptor monomer, dimer, or both? 
BMC Biophysics  2013;6:7.
A recent study by Dietz et al. using single-molecule fluorescence microscopy techniques demonstrates that, in the absence of the ligand InlB, the MET receptor exists as both a monomer and a dimer on the cell membrane, and addition of the ligand leads to increased MET dimerization. Under the crowded conditions of the cell membrane, dimer formation may be a common phenomenon for cell surface receptors. Ligand binding to both monomeric and dimeric receptors may provide parallel routes to receptor activation.
doi:10.1186/2046-1682-6-7
PMCID: PMC3674895  PMID: 23731691
12.  Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells 
BMC Biophysics  2013;6:6.
Background
The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane.
Results
To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding.
Conclusions
Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.
doi:10.1186/2046-1682-6-6
PMCID: PMC3674922  PMID: 23731667
MET receptor; Dimerization; Single-molecule photobleaching; Fluorescence correlation spectroscopy; Fluorescence; Signal transduction
13.  Time-resolved force distribution analysis 
BMC Biophysics  2013;6:5.
Background
Biomolecules or other complex macromolecules undergo conformational transitions upon exposure to an external perturbation such as ligand binding or mechanical force. To follow fluctuations in pairwise forces between atoms or residues during such conformational changes as observed in Molecular Dynamics (MD) simulations, we developed Time-Resolved Force Distribution Analysis (TRFDA).
Results
The implementation focuses on computational efficiency and low-memory usage and, along with the wide range of output options, makes possible time series analysis of pairwise forces variation in long MD simulations and for large molecular systems. It also provides an exact decomposition of pairwise forces resulting from 3- and 4-body potentials and a unified treatment of pairwise forces between atoms or residues. As a proof of concept, we present a stress analysis during unfolding of ubiquitin in a force-clamp MD simulation.
Conclusions
TRFDA can be used, among others, in tracking signal propagation at atomic level, for characterizing dynamical intermolecular interactions (e.g. protein-ligand during flexible docking), in development of force fields and for following stress distribution during conformational changes.
doi:10.1186/2046-1682-6-5
PMCID: PMC3669045  PMID: 24499624
14.  Improving accuracy of cell and chromophore concentration measurements using optical density 
BMC Biophysics  2013;6:4.
Background
UV–vis spectrophotometric optical density (OD) is the most commonly-used technique for estimating chromophore formation and cell concentration in liquid culture. OD wavelength is often chosen with little thought given to its effect on the quality of the measurement. Analysis of the contributions of absorption and scattering to the measured optical density provides a basis for understanding variability among spectrophotometers and enables a quantitative evaluation of the applicability of the Beer-Lambert law. This provides a rational approach for improving the accuracy of OD measurements used as a proxy for direct dry weight (DW), cell count, and pigment levels.
Results
For pigmented organisms, the choice of OD wavelength presents a tradeoff between the robustness and the sensitivity of the measurement. The OD at a robust wavelength is primarily the result of light scattering and does not vary with culture conditions; whereas, the OD at a sensitive wavelength is additionally dependent on light absorption by the organism’s pigments. Suitably robust and sensitive wavelengths are identified for a wide range of organisms by comparing their spectra to the true absorption spectra of dyes. The relative scattering contribution can be reduced either by measurement at higher OD, or by the addition of bovine serum albumin. Reduction of scattering or correlation with off-peak light attenuation provides for more accurate assessment of chromophore levels within cells. Conversion factors between DW, OD, and colony-forming unit density are tabulated for 17 diverse organisms to illustrate the scope of variability of these correlations. Finally, an inexpensive short pathlength LED-based flow cell is demonstrated for the online monitoring of growth in a bioreactor at culture concentrations greater than 5 grams dry weight per liter which would otherwise require off-line dilutions to obtain non-saturated OD measurements.
Conclusions
OD is most accurate as a time-saving proxy measurement for biomass concentration when light attenuation is dominated by scattering. However, the applicability of OD-based correlations is highly dependent on the measurement specifications (spectrophotometer model and wavelength) and culture conditions (media type; growth stage; culture stress; cell/colony geometry; presence and concentration of secreted compounds). These variations highlight the importance of treating literature conversion factors as rough approximations as opposed to concrete constants. There is an opportunity to optimize measurements of cell pigment levels by considering scattering and absorption-dependent wavelengths of the OD spectrum.
doi:10.1186/2046-1682-6-4
PMCID: PMC3663833  PMID: 24499615
Optical density; Light scattering; Algae; Conversion factors; Dry weight; Flow cell
15.  Wavelet-based protocols for ion channel electrophysiology 
BMC Biophysics  2013;6:3.
Background
Fluctuation-induced phenomena caused by both random and deterministic stimuli have been previously studied in a variety of contexts. They are based on the interplay between the spectro-temporal patterns of the signal and the kinetics of the system it is applied to. The aim of this study was to develop a method for designing fluctuating inputs into nonlinear system which would elicit the most desired system output and to implement the method to studies of ion channels.
Results
We describe an algorithm based on constructing the input as a superposition of wavelets and optimizing it according to a selected cost functional. The algorithm is applied to ion channel electrophysiology where the input is the fluctuating voltage delivered through a patch-clamp experimental apparatus and the output is the whole-cell ionic current. The algorithm is optimized to aid selection of Markov models of the gating kinetics of the voltage-gated Shaker K+ channel and tested by comparison of numerically obtained ionic currents predicted by different models with experimental data obtained from the Shaker K+ channels. Other applications and optimization criteria are also suggested.
Conclusion
The method described in this paper can be useful in development and testing of models of ion channel gating kinetics, developing voltage inputs that optimize certain nonequilibrium phenomena in ion channels, such as the kinetic focusing, and potentially has applications to other fields.
doi:10.1186/2046-1682-6-3
PMCID: PMC3608073  PMID: 23497467
Voltage-gated Shaker potassium channel; Markov model; Wavelet; Patch clamping
16.  A biophysical model for transcription factories 
BMC Biophysics  2013;6:2.
Summary
Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis.
doi:10.1186/2046-1682-6-2
PMCID: PMC3740778  PMID: 23394119
Epigenetics; Biophysics; H4K16Ac; BrUTP; Transcription Factories; RNA pol II; Nuclear organization
17.  Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences 
BMC Biophysics  2013;6:1.
Background and objective
Regulating protein function in the cell by small molecules, provide a rapid, reversible and tunable tool of metabolic control. However, due to its complexity the issue is poorly studied so far. The effects of small solutes on protein behavior can be studied by examining changes of protein secondary structure, in its hydrodynamic radius as well as its thermal aggregation. The study aim was to investigate effects of adenosine-5’-triphosphate (ATP), spermine NONOate (NO donor) as well as sodium/potassium ions on thermal aggregation of albumin and hemoglobin. To follow aggregation of the proteins, their diffusion coefficients were measured by quasi-elastic light scattering (QELS) at constant pH (7.4) in the presence of solutes over a temperature range from 25°C to 80°C.
Results and discussion
1) Spermine NONOate persistently decreased the hemoglobin aggregation temperature Tairrespectively of the Na+/K+ environment, 2) ATP alone had no effect on the protein’s thermal stability but it facilitated protein’s destabilization in the presence of spermine NONOate and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions.
Conclusion
The ATP effect on protein aggregation was ambiguous: ATP alone had no effect on the protein’s thermal stability but it facilitated protein’s destabilization in the presence of nitric oxide. The magnitude and direction of the observed effects strongly depended on concentrations of K+ and Na+ in the solution.
doi:10.1186/2046-1682-6-1
PMCID: PMC3561150  PMID: 23289636
18.  Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly 
BMC Biophysics  2012;5:22.
Background
In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly).
Results
In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results.
Conclusions
Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase our physical understanding of an essential biological process, with many interesting potential applications in medicine and materials science.
doi:10.1186/2046-1682-5-22
PMCID: PMC3563543  PMID: 23244740
19.  Pulling chromatin apart: Unstacking or Unwrapping? 
BMC Biophysics  2012;5:21.
Background
Understanding the mechanical properties of chromatin is an essential step towards deciphering the physical rules of gene regulation. In the past ten years, many single molecule experiments have been carried out, and high resolution measurements of the chromatin fiber stiffness are now available. Simulations have been used in order to link those measurements with structural cues, but so far no clear agreement among different groups has been reached.
Results
We revisit here some of the most precise experimental results obtained with carefully reconstituted fibers.
Conclusions
We show that the mechanical properties of the chromatin fiber can be quantitatively accounted for by the stiffness of the DNA molecule and the 3D structure of the chromatin fiber.
doi:10.1186/2046-1682-5-21
PMCID: PMC3575279  PMID: 23186373
20.  Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells 
BMC Biophysics  2012;5:20.
Background
Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport.
Results
We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%.
Conclusions
The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport.
doi:10.1186/2046-1682-5-20
PMCID: PMC3532368  PMID: 23078907
Cholesterol; Transport; Fluorescence microscopy; Endocytosis; Vesicle; Tracking; Cytoskeleton dynamics
21.  Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells 
BMC Biophysics  2012;5:19.
Background
Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed.
Results
Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size.
Conclusions
In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types.
doi:10.1186/2046-1682-5-19
PMCID: PMC3507795  PMID: 22967319
22.  Intracellular chemical gradients: morphing principle in bacteria 
BMC Biophysics  2012;5:18.
Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012) postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.
doi:10.1186/2046-1682-5-18
PMCID: PMC3443414  PMID: 22954369
23.  Physical constraints on the establishment of intracellular spatial gradients in bacteria 
BMC Biophysics  2012;5:17.
Background
Bacteria dynamically regulate their intricate intracellular organization involving proteins that facilitate cell division, motility, and numerous other processes. Consistent with this sophisticated organization, bacteria are able to create asymmetries and spatial gradients of proteins by localizing signaling pathway components. We use mathematical modeling to investigate the biochemical and physical constraints on the generation of intracellular gradients by the asymmetric localization of a source and a sink.
Results
We present a systematic computational analysis of the effects of other regulatory mechanisms, such as synthesis, degradation, saturation, and cell growth. We also demonstrate that gradients can be established in a variety of bacterial morphologies such as rods, crescents, spheres, branched and constricted cells.
Conclusions
Taken together, these results suggest that gradients are a robust and potentially common mechanism for providing intracellular spatial cues.
doi:10.1186/2046-1682-5-17
PMCID: PMC3496868  PMID: 22931750
24.  Effects of spermine NONOate and ATP on the thermal stability of hemoglobin 
BMC Biophysics  2012;5:16.
Background
Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min.
Results
Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature Tuirrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature.
Conclusion
The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.
doi:10.1186/2046-1682-5-16
PMCID: PMC3443461  PMID: 22929146
25.  Flexibility of EF-hand motifs: structural and thermodynamic studies of Calcium Binding Protein-1 from Entamoeba histolytica with Pb2+, Ba2+, and Sr2+ 
BMC Biophysics  2012;5:15.
Background
EF-hand proteins can be activated by the binding of various heavy metals other than calcium, and such complexes can disturb the calcium-signaling pathway and cause toxicity and disease causing state. So far, no comprehensive study has been done to understand different heavy metals binding to calcium signaling proteins.
Results
In this work, the flexibility of the EF-hand motifs are examined by crystallographic and thermodynamic studies of binding of Pb2+, Ba2+ and Sr2+ to Calcium Binding Protein-1 from Entamoeba histolytica (EhCaBP1). The structures of the EhCaBP1- heavy metal complexes are found to be overall similar, nevertheless specific differences in metal coordination, and small differences in the coordination distances between the metal and the ligands in the metal binding loop. The largest such distances occur for the Ba2+- EhCaBP1 complex, where two bariums are bound with partial occupancy at the EF2 motif. Thermodynamic studies confirm that EhCaBP1 has five binding sites for Ba2+ compared to four binding sites for the other metals. These structures and thermodynamic studies reveal that the EF-hand motifs can accommodate several heavy atoms with similar binding affinities. The binding of Ca2+ to the 1st, 2nd and 4th sites and the binding of Ba2+ to the 1st, 2nd, 4th and 5th sites are both enthalpically and entropically driven, whereas the binding of Sr2+ to the 1st, 2nd and 4th sites are simply enthalpy driven, interestingly in agreement with ITC data, Sr2+ do not coordinate with water in this structure. For all the metals, binding to the 3rd site is only entropy driven.
Conclusion
Energetically, Ca2+ is preferred in three sites, while in one site Ba2+ has better binding energy. The Sr2+-coordination in the EF hand motifs is similar to that of the native Ca2+ bound structure, except for the lack of water coordination. Sr2+ coordination seems to be a pre-formed in nature since all seven coordinating atoms are from the protein itself, which also correlates with entropy contributions in Sr2+ binding. These findings improve our understanding of metal association with calcium binding proteins and of metal induced conformational changes.
doi:10.1186/2046-1682-5-15
PMCID: PMC3483242  PMID: 22906057
Calcium sensor; Calcium binding protein; Coordination geometry; EF-hand motifs; Anthropogenic toxicant; Domain swapped manner; Anomalous signal

Results 1-25 (60)