Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)
Year of Publication
Document Types
1.  Increased synaptic microtubules and altered synapse development in Drosophila sec8 mutants 
BMC Biology  2005;3:27.
Sec8 is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly. However, these models have never been tested in vivo. Nervous system development and function have not been described after mutation of sec8 in any organism.
We identified lethal sec8 mutants in an unbiased forward genetic screen for mutations causing defects in development of glutamatergic Drosophila neuromuscular junctions (NMJs). The Drosophila NMJ is genetically malleable and accessible throughout development to electrophysiology and immunocytochemistry, making it ideal for examination of the sec8 mutant synaptic phenotype. We developed antibodies to Drosophila Sec8 and showed that Sec8 is abundant at the NMJ. In our sec8 null mutants, in which the sec8 gene is specifically deleted, Sec8 immunoreactivity at the NMJ is eliminated but immunoblots reveal substantial maternal contribution in the rest of the animal. Contrary to the hypothesis that Sec8 is required for neurite outgrowth or synaptic terminal growth, immunocytochemical examination revealed that sec8 mutant NMJs developed more branches and presynaptic terminals during larval development, compared to controls. Synaptic electrophysiology showed no evidence that Sec8 is required for basal neurotransmission, though glutamate receptor trafficking was mildly disrupted in sec8 mutants. The most dramatic NMJ phenotype in sec8 mutants was an increase in synaptic microtubule density, which was approximately doubled compared to controls.
Sec8 is abundant in the Drosophila NMJ. Sec8 is required in vivo for regulation of synaptic microtubule formation, and (probably secondarily) regulation of synaptic growth and glutamate receptor trafficking. We did not find any evidence that Sec8 is required for basal neurotransmission.
PMCID: PMC1326216  PMID: 16351720
2.  The transcriptome of Toxoplasma gondii 
BMC Biology  2005;3:26.
Toxoplasma gondii gives rise to toxoplasmosis, among the most prevalent parasitic diseases of animals and man. Transformation of the tachzyoite stage into the latent bradyzoite-cyst form underlies chronic disease and leads to a lifetime risk of recrudescence in individuals whose immune system becomes compromised. Given the importance of tissue cyst formation, there has been intensive focus on the development of methods to study bradyzoite differentiation, although the molecular basis for the developmental switch is still largely unknown.
We have used serial analysis of gene expression (SAGE) to define the Toxoplasma gondii transcriptome of the intermediate-host life cycle that leads to the formation of the bradyzoite/tissue cyst. A broad view of gene expression is provided by >4-fold coverage from nine distinct libraries (~300,000 SAGE tags) representing key developmental transitions in primary parasite populations and in laboratory strains representing the three canonical genotypes. SAGE tags, and their corresponding mRNAs, were analyzed with respect to abundance, uniqueness, and antisense/sense polarity and chromosome distribution and developmental specificity.
This study demonstrates that phenotypic transitions during parasite development were marked by unique stage-specific mRNAs that accounted for 18% of the total SAGE tags and varied from 1–5% of the tags in each developmental stage. We have also found that Toxoplasma mRNA pools have a unique parasite-specific composition with 1 in 5 transcripts encoding Apicomplexa-specific genes functioning in parasite invasion and transmission. Developmentally co-regulated genes were dispersed across all Toxoplasma chromosomes, as were tags representing each abundance class, and a variety of biochemical pathways indicating that trans-acting mechanisms likely control gene expression in this parasite. We observed distinct similarities in the specificity and expression levels of mRNAs in primary populations (Day-6 post-sporozoite infection) that occur prior to the onset of bradyzoite development that were uniquely shared with the virulent Type I-RH laboratory strain suggesting that development of RH may be arrested. By contrast, strains from Type II-Me49B7 and Type III-VEGmsj contain SAGE tags corresponding to bradyzoite genes, which suggests that priming of developmental expression likely plays a role in the greater capacity of these strains to complete bradyzoite development.
PMCID: PMC1325263  PMID: 16324218
3.  Dynamic regulation of integrin activation by intracellular and extracellular signals controls oligodendrocyte morphology 
BMC Biology  2005;3:25.
Myelination requires precise control of oligodendrocyte morphology and myelin generation at each of the axons contacted by an individual cell. This control must involve the integration of extracellular cues, such as those on the axon surface, with intrinsic developmental programmes. We asked whether integrins represent one class of oligodendrocyte cell-surface receptors able to provide this integration.
Integrins signal via a process of activation, a conformational change that can be induced either by "outside-in" signals comprising physiological extracellular matrix ligands (mimicked by the pharmacological use of the divalent cation manganese) or "inside-out" signalling molecules such as R-Ras. Increasing levels of outside-in signalling via the laminin receptor α6β1 integrin were found to promote oligodendrocyte processing and myelin sheet formation in culture. Similar results were obtained when inside-out signalling was increased by the expression of a constitutively-active R-Ras. Inhibiting inside-out signalling by using dominant-negative R-Ras reduces processes and myelin sheets; importantly, this can be partially rescued by the co-stimulation of outside-in signalling using manganese.
The balance of the equilibrium between active and inactive integrins regulates oligodendrocyte morphology, which is itself regulated by extrinsic and intrinsic cues so providing a mechanism of signal integration. As laminins capable of providing outside-in signals are present on axons at the time of myelination, a mechanism exists by which morphology and myelin generation might be regulated independently in each oligodendrocyte process.
PMCID: PMC1315338  PMID: 16283943
4.  Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome 
BMC Biology  2005;3:24.
Recent analysis of the human and mouse genomes has shown that a substantial proportion of protein coding genes and cis-regulatory elements contain transposable element (TE) sequences, implicating TE domestication as a mechanism for the origin of genetic novelty. To understand the general role of TE domestication in eukaryotic genome evolution, it is important to assess the acquisition of functional TE sequences by host genomes in a variety of different species, and to understand in greater depth the population dynamics of these mutational events.
Using an in silico screen for host genes that contain TE sequences, we identified a set of 63 mature "chimeric" transcripts supported by expressed sequence tag (EST) evidence in the Drosophila melanogaster genome. We found a paucity of chimeric TEs relative to expectations derived from non-chimeric TEs, indicating that the majority (~80%) of TEs that generate chimeric transcripts are deleterious and are not observed in the genome sequence. Using a pooled-PCR strategy to assay the presence of gene-TE chimeras in wild strains, we found that over half of the observed chimeric TE insertions are restricted to the sequenced strain, and ~15% are found at high frequencies in North American D. melanogaster populations. Estimated population frequencies of chimeric TEs did not differ significantly from non-chimeric TEs, suggesting that the distribution of fitness effects for the observed subset of chimeric TEs is indistinguishable from the general set of TEs in the genome sequence.
In contrast to mammalian genomes, we found that fewer than 1% of Drosophila genes produce mRNAs that include bona fide TE sequences. This observation can be explained by the results of our population genomic analysis, which indicates that most potential chimeric TEs in D. melanogaster are deleterious but that a small proportion may contribute to the evolution of novel gene sequences such as nested or intercalated gene structures. Our results highlight the need to establish the fixity of putative cases of TE domestication identified using genome sequences in order to demonstrate their functional importance, and reveal that the contribution of TE domestication to genome evolution may vary drastically among animal taxa.
PMCID: PMC1308810  PMID: 16283942
5.  Wnt5 signaling in vertebrate pancreas development 
BMC Biology  2005;3:23.
Signaling by the Wnt family of secreted glycoproteins through their receptors, the frizzled (Fz) family of seven-pass transmembrane proteins, is critical for numerous cell fate and tissue polarity decisions during development.
We report a novel role of Wnt signaling in organogenesis using the formation of the islet during pancreatic development as a model tissue. We used the advantages of the zebrafish to visualize and document this process in living embryos and demonstrated that insulin-positive cells actively migrate to form an islet. We used morpholinos (MOs), sequence-specific translational inhibitors, and time-lapse imaging analysis to show that the Wnt-5 ligand and the Fz-2 receptor are required for proper insulin-cell migration in zebrafish. Histological analyses of islets in Wnt5a-/- mouse embryos showed that Wnt5a signaling is also critical for murine pancreatic insulin-cell migration.
Our results implicate a conserved role of a Wnt5/Fz2 signaling pathway in islet formation during pancreatic development. This study opens the door for further investigation into a role of Wnt signaling in vertebrate organ development and disease.
PMCID: PMC1276788  PMID: 16246260
6.  The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales 
BMC Biology  2005;3:22.
The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum.
The 157,089 bp Staurastrum and 165,372 bp Zygnema cpDNAs encode 121 and 125 genes, respectively. Although both cpDNAs lack an rRNA-encoding inverted repeat (IR), they are substantially larger than Chaetosphaeridium and land plant cpDNAs. This increased size is explained by the expansion of intergenic spacers and introns. The Staurastrum and Zygnema genomes differ extensively from one another and from their streptophyte counterparts at the level of gene order, with the Staurastrum genome more closely resembling its land plant counterparts than does Zygnema cpDNA. Many intergenic regions in Zygnema cpDNA harbor tandem repeats. The introns in both Staurastrum (8 introns) and Zygnema (13 introns) cpDNAs represent subsets of those found in land plant cpDNAs. They represent 16 distinct insertion sites, only five of which are shared by the two zygnematalean genomes. Three of these insertions sites have not been identified in Chaetosphaeridium cpDNA.
The chloroplast genome experienced substantial changes in overall structure, gene order, and intron content during the evolution of the Zygnematales. Most of the features considered earlier as typical of land plant cpDNAs probably originated before the emergence of the Zygnematales and Coleochaetales.
PMCID: PMC1277820  PMID: 16236178
7.  Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization 
BMC Biology  2005;3:21.
Compartmentalization is a key feature of eukaryotic cells, but its evolution remains poorly understood. GTPases are the oldest enzymes that use nucleotides as substrates and they participate in a wide range of cellular processes. Therefore, they are ideal tools for comparative genomic studies aimed at understanding how aspects of biological complexity such as cellular compartmentalization evolved.
We describe the identification and characterization of a unique family of circularly permuted GTPases represented by the human orthologue of yeast Lsg1p. We placed the members of this family in the phylogenetic context of the YlqF Related GTPase (YRG) family, which are present in Eukarya, Bacteria and Archea and include the stem cell regulator Nucleostemin. To extend the computational analysis, we showed that hLsg1 is an essential GTPase predominantly located in the endoplasmic reticulum and, in some cells, in Cajal bodies in the nucleus. Comparison of localization and siRNA datasets suggests that all members of the family are essential GTPases that have increased in number as the compartmentalization of the eukaryotic cell and the ribosome biogenesis pathway have evolved.
We propose a scenario, consistent with our data, for the evolution of this family: cytoplasmic components were first acquired, followed by nuclear components, and finally the mitochondrial and chloroplast elements were derived from different bacterial species, in parallel with the formation of the nucleolus and the specialization of nuclear components.
PMCID: PMC1262696  PMID: 16209721
8.  The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications 
BMC Biology  2005;3:20.
Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals.
We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes.
Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.
PMCID: PMC1261165  PMID: 16188032
9.  Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans 
BMC Biology  2005;3:19.
Regular exercise reduces cardiovascular and metabolic disease partly through improved aerobic fitness. The determinants of exercise-induced gains in aerobic fitness in humans are not known. We have demonstrated that over 500 genes are activated in response to endurance-exercise training, including modulation of muscle extracellular matrix (ECM) genes. Real-time quantitative PCR, which is essential for the characterization of lower abundance genes, was used to examine 15 ECM genes potentially relevant for endurance-exercise adaptation. Twenty-four sedentary male subjects undertook six weeks of high-intensity aerobic cycle training with muscle biopsies being obtained both before and 24 h after training. Subjects were ranked based on improvement in aerobic fitness, and two cohorts were formed (n = 8 per group): the high-responder group (HRG; peak rate of oxygen consumption increased by +0.71 ± 0.1 L min-1; p < 0.0001) while the low-responder group (LRG; peak rate of oxygen consumption did not change, +0.17 ± 0.1 L min-1, ns). ECM genes profiled included the angiopoietin 1 and related genes (angiopoietin 2, tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1) and 2 (TIE2), vascular endothelial growth factor (VEGF) and related receptors (VEGF receptor 1, VEGF receptor 2 and neuropilin-1), thrombospondin-4, α2-macroglobulin and transforming growth factor β2.
neuropilin-1 (800%; p < 0.001) and VEGF receptor 2 (300%; p < 0.01) transcript abundance increased only in the HRG, whereas levels of VEGF receptor 1 mRNA actually declined in the LRG (p < 0.05). TIE1 and TIE2 mRNA levels were unaltered in the LRG, whereas transcription levels of both genes were increased by 2.5-fold in the HRG (p < 0.01). Levels of thrombospondin-4 (900%; p < 0.001) and α2-macroglobulin (300%, p < 0.05) mRNA increased substantially in the HRG. In contrast, the amount of transforming growth factor β2 transcript increased only in the HRG (330%; p < 0.01), whereas it remained unchanged in the LRG (-80%).
We demonstrate for the first time that aerobic training activates angiopoietin 1 and TIE2 genes in human muscle, but only when aerobic capacity adapts to exercise-training. The fourfold-greater increase in aerobic fitness and markedly differing gene expression profile in the HRG indicates that these ECM genes may be critical for physiological adaptation to exercise in humans. In addition, we show that, without careful demonstration of physiological adaptation, conclusions derived from gene expression profiling of human skeletal muscle following exercise may be of limited value. We propose that future studies should (a) investigate the mechanisms that underlie the apparent link between physiological adaptation and gene expression and (b) use the genes profiled in this paper as candidates for population genetic studies.
PMCID: PMC1224855  PMID: 16138928
10.  Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo 
BMC Biology  2005;3:18.
Runx transcription factors play critical roles in the developmental control of cell fate and contribute variously as oncoproteins and tumor suppressors to leukemia and other cancers. To discover fundamental Runx functions in the cell biology of animal development, we have employed morpholino antisense-mediated knockdown of the sea urchin Runx protein SpRunt-1. Previously we showed that embryos depleted of SpRunt-1 arrest development at early gastrula stage and underexpress the conventional protein kinase C SpPKC1.
We report here that SpRunt-1 deficiency leads to ectopic cell proliferation and extensive apoptosis. Suppression of the apoptosis by pharmacological inhibition of caspase-3 prevents the ectopic proliferation and rescues gastrulation, indicating that many of the overt defects obtained by knockdown of SpRunt-1 are secondary to the apoptosis. Inhibition or knockdown of SpPKC1 also causes apoptosis, while cell survival is rescued in SpRunt-1 morphant embryos coinjected with SpPKC1 mRNA, suggesting that the apoptosis associated with SpRunt-1 deficiency is caused by the deficit in SpPKC1 expression. Chromatin immunoprecipitation indicates that SpRunt-1 interacts physically with SpPKC1 in vivo, and cis-regulatory analysis shows that this interaction activates SpPKC1 transcription.
Our results show that Runx-dependent activation of SpPKC1 is essential for maintaining protein kinase C activity at levels conducive to cell survival during embryogenesis.
PMCID: PMC1187879  PMID: 16076398
11.  Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor 
BMC Biology  2005;3:17.
Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG) elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA) induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization.
Both structures were probed simultaneously in a single experimental approach. Two stimulation electrodes were chronically implanted within the PAG in order to elicit either echolocation or communication calls. Blockade of the ipsilateral PLA site with iontophoretically application of the glutamate antagonist kynurenic acid did not impede either echolocation or communication calls elicited from the PAG. However, blockade of the contralateral PLA suppresses PAG-elicited echolocation calls but not communication calls. In both cases the blockade was reversible.
The neural control of echolocation and communication calls seems to be differentially organized below the level of the PAG. The PLA is an essential functional unit for echolocation call control before the descending pathways share again the final common pathway for vocalization.
PMCID: PMC1190161  PMID: 16053533
12.  Alternative pre-mRNA processing regulates cell-type specific expression of the IL4l1 and NUP62 genes 
BMC Biology  2005;3:16.
Given the complexity of higher organisms, the number of genes encoded by their genomes is surprisingly small. Tissue specific regulation of expression and splicing are major factors enhancing the number of the encoded products. Commonly these mechanisms are intragenic and affect only one gene.
Here we provide evidence that the IL4I1 gene is specifically transcribed from the apparent promoter of the upstream NUP62 gene, and that the first two exons of NUP62 are also contained in the novel IL4I1_2 variant. While expression of IL4I1 driven from its previously described promoter is found mostly in B cells, the expression driven by the NUP62 promoter is restricted to cells in testis (Sertoli cells) and in the brain (e.g., Purkinje cells). Since NUP62 is itself ubiquitously expressed, the IL4I1_2 variant likely derives from cell type specific alternative pre-mRNA processing.
Comparative genomics suggest that the promoter upstream of the NUP62 gene originally belonged to the IL4I1 gene and was later acquired by NUP62 via insertion of a retroposon. Since both genes are apparently essential, the promoter had to serve two genes afterwards. Expression of the IL4I1 gene from the "NUP62" promoter and the tissue specific involvement of the pre-mRNA processing machinery to regulate expression of two unrelated proteins indicate a novel mechanism of gene regulation.
PMCID: PMC1198218  PMID: 16029492
13.  A mutation in the centriole-associated protein centrin causes genomic instability via increased chromosome loss in Chlamydomonas reinhardtii 
BMC Biology  2005;3:15.
The role of centrioles in mitotic spindle function remains unclear. One approach to investigate mitotic centriole function is to ask whether mutation of centriole-associated proteins can cause genomic instability.
We addressed the role of the centriole-associated EF-hand protein centrin in genomic stability using a Chlamydomonas reinhardtii centrin mutant that forms acentriolar bipolar spindles and lacks the centrin-based rhizoplast structures that join centrioles to the nucleus. Using a genetic assay for loss of heterozygosity, we found that this centrin mutant showed increased genomic instability compared to wild-type cells, and we determined that the increase in genomic instability was due to a 100-fold increase in chromosome loss rates compared to wild type. Live cell imaging reveals an increased rate in cell death during G1 in haploid cells that is consistent with an elevated rate of chromosome loss, and analysis of cell death versus centriole copy number argues against a role for multipolar spindles in this process.
The increased chromosome loss rates observed in a centrin mutant that forms acentriolar spindles suggests a role for centrin protein, and possibly centrioles, in mitotic fidelity.
PMCID: PMC1174865  PMID: 15927066
14.  PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes 
BMC Biology  2005;3:14.
PCI/MPN domain protein complexes comprise the 19S proteasome lid, the COP9 signalosome (CSN), and eukaryotic translation initiation factor 3 (eIF3). The eIF3 complex is thought to be composed of essential core subunits required for global protein synthesis and non-essential subunits that may modulate mRNA specificity. Interactions of unclear significance were reported between eIF3 subunits and PCI proteins contained in the CSN.
Here, we report the unexpected finding that fission yeast has two distinct eIF3 complexes sharing common core subunits, but distinguished by the PCI proteins eIF3e and the novel eIF3m, which was previously annotated as a putative CSN subunit. Whereas neither eIF3e nor eIF3m contribute to the non-essential activities of CSN in cullin-RING ubiquitin ligase control, eif3m, unlike eif3e, is an essential gene required for global cellular protein synthesis and polysome formation. Using a ribonomic approach, this phenotypic distinction was correlated with a different set of mRNAs associated with the eIF3e and eIF3m complexes. Whereas the eIF3m complex appears to associate with the bulk of cellular mRNAs, the eIF3e complex associates with a far more restricted set. The microarray findings were independently corroborated for a random set of 14 mRNAs by RT-PCR analysis.
We propose that the PCI proteins eIF3e and eIF3m define distinct eIF3 complexes that may assist in the translation of different sets of mRNAs.
PMCID: PMC1173091  PMID: 15904532
15.  The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context 
BMC Biology  2005;3:13.
The TyrA protein family includes members that catalyze two dehydrogenase reactions in distinct pathways leading to L-tyrosine and a third reaction that is not part of tyrosine biosynthesis. Family members share a catalytic core region of about 30 kDa, where inhibitors operate competitively by acting as substrate mimics. This protein family typifies many that are challenging for bioinformatic analysis because of relatively modest sequence conservation and small size.
Phylogenetic relationships of TyrA domains were evaluated in the context of combinatorial patterns of specificity for the two substrates, as well as the presence or absence of a variety of fusions. An interactive tool is provided for prediction of substrate specificity. Interactive alignments for a suite of catalytic-core TyrA domains of differing specificity are also provided to facilitate phylogenetic analysis. tyrA membership in apparent operons (or supraoperons) was examined, and patterns of conserved synteny in relationship to organismal positions on the 16S rRNA tree were ascertained for members of the domain Bacteria. A number of aromatic-pathway genes (hisHb, aroF, aroQ) have fused with tyrA, and it must be more than coincidental that the free-standing counterparts of all of the latter fused genes exhibit a distinct trace of syntenic association.
We propose that the ancestral TyrA dehydrogenase had broad specificity for both the cyclohexadienyl and pyridine nucleotide substrates. Indeed, TyrA proteins of this type persist today, but it is also common to find instances of narrowed substrate specificities, as well as of acquisition via gene fusion of additional catalytic domains or regulatory domains. In some clades a qualitative change associated with either narrowed substrate specificity or gene fusion has produced an evolutionary "jump" in the vertical genealogy of TyrA homologs. The evolutionary history of gene organizations that include tyrA can be deduced in genome assemblages of sufficiently close relatives, the most fruitful opportunities currently being in the Proteobacteria. The evolution of TyrA proteins within the broader context of how their regulation evolved and to what extent TyrA co-evolved with other genes as common members of aromatic-pathway regulons is now feasible as an emerging topic of ongoing inquiry.
PMCID: PMC1173090  PMID: 15888209
16.  The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth 
BMC Biology  2005;3:12.
Flowering plant development is wholly reliant on growth from meristems, which contain totipotent cells that give rise to all post-embryonic organs in the plant. Plants are uniquely able to alter their development throughout their lifespan through the generation of new organs in response to external signals. To identify genes that regulate meristem-based growth, we considered homologues of Raptor proteins, which regulate cell growth in response to nutrients in yeast and metazoans as part of a signaling complex with the target of rapamycin (TOR) kinase.
We identified AtRaptor1A and AtRaptor1B, two loci predicted to encode Raptor proteins in Arabidopsis. Disruption of AtRaptor1B yields plants with a wide range of developmental defects: roots are thick and grow slowly, leaf initiation and bolting are delayed and the shoot inflorescence shows reduced apical dominance. AtRaptor1A AtRaptor1B double mutants show normal embryonic development but are unable to maintain post-embryonic meristem-driven growth. AtRaptor transcripts accumulate in dividing and expanding cells and tissues.
The data implicate the TOR signaling pathway, a major regulator of cell growth in yeast and metazoans, in the maintenance of growth from the shoot apical meristem in plants. These results provide insights into the ways in which TOR/Raptor signaling has been adapted to regulate plant growth and development, and indicate that in plants, as in other eukaryotes, there is some Raptor-independent TOR activity.
PMCID: PMC1131892  PMID: 15845148
17.  Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells 
BMC Biology  2005;3:11.
A key event in plant morphogenesis is the establishment of a division plane. A plant-specific microtubular preprophase band (PPB) accurately predicts the line of cell division, whereas the phragmoplast, another plant-specific array, executes cell division by maintaining this predicted line. Although establishment of these specific arrays apparently involves intracellular repolarization events that focus cellular resources to a division site, it still remains unclear how microtubules position the cell division planes. Here we study GFP-AtEB1 decorated microtubule plus-ends to dissect events at the division plane.
Early mitotic events included guided growth of endoplasmic microtubules (EMTs) towards the PPB site and their coincident localization with endocytic vesicles. Consequently, an endosomal belt lay in close proximity to the microtubular PPB at its maturation and was maintained during spindle formation. During cytokinesis, EMTs radiated from the former spindle poles in a geometrical conformation correlating with cell-plate navigation and tilt-correction. Naphthylphtalamic acid (NPA), an inhibitor of polar auxin efflux, caused abnormal PPBs and shifted division planes.
Our observations reveal a spatio-temporal link between microtubules and intracellular polarization essential for localized endocytosis and precise establishment of the division plane in plants. Additionally, they implicate the growth regulator, auxin, in this important cellular event.
PMCID: PMC1087477  PMID: 15831100
18.  Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs 
BMC Biology  2005;3:10.
In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia) faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD) with Costs". An experiment has been designed to test the density (competition) dependence of the vertical distribution as this is a basic assumption of IFD theory.
Experiments were performed in large, indoor mesocosms (Plankton Towers) with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors.
The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.
PMCID: PMC1082883  PMID: 15813974
19.  Ocean climate and seal condition 
BMC Biology  2005;3:9.
The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual.
The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures.
Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.
PMCID: PMC1082885  PMID: 15794819
20.  Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function 
BMC Biology  2005;3:8.
Parasites exploit sophisticated strategies to evade host immunity that require both adaptation of existing genes and evolution of new gene families. We have addressed this question by testing the immunological function of novel genes from helminth parasites, in which conventional transgenesis is not yet possible. We investigated two such novel genes from Brugia malayi termed abundant larval transcript (alt), expression of which reaches ~5% of total transcript at the time parasites enter the human host.
To test the hypothesis that ALT proteins modulate host immunity, we adopted an alternative transfection strategy to express these products in the protozoan parasite Leishmania mexicana. We then followed the course of infection in vitro in macrophages and in vivo in mice. Expression of ALT proteins, but not a truncated mutant, conferred greater infectivity of macrophages in vitro, reaching 3-fold higher parasite densities. alt-transfected parasites also caused accelerated disease in vivo, and fewer mice were able to clear infection of organisms expressing ALT. alt-transfected parasites were more resistant to IFN-γ-induced killing by macrophages. Expression profiling of macrophages infected with transgenic L. mexicana revealed consistently higher levels of GATA-3 and SOCS-1 transcripts, both associated with the Th2-type response observed in in vivo filarial infection.
Leishmania transfection is a tractable and informative approach to determining immunological functions of single genes from heterologous organisms. In the case of the filarial ALT proteins, our data suggest that they may participate in the Th2 bias observed in the response to parasite infection by modulating cytokine-induced signalling within immune system cells.
PMCID: PMC555940  PMID: 15788098
21.  Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release 
BMC Biology  2005;3:7.
Since the initial publication of its complete genome sequence, Arabidopsis thaliana has become more important than ever as a model for plant research. However, the initial genome annotation was submitted by multiple centers using inconsistent methods, making the data difficult to use for many applications.
Over the course of three years, TIGR has completed its effort to standardize the structural and functional annotation of the Arabidopsis genome. Using both manual and automated methods, Arabidopsis gene structures were refined and gene products were renamed and assigned to Gene Ontology categories. We present an overview of the methods employed, tools developed, and protocols followed, summarizing the contents of each data release with special emphasis on our final annotation release (version 5).
Over the entire period, several thousand new genes and pseudogenes were added to the annotation. Approximately one third of the originally annotated gene models were significantly refined yielding improved gene structure annotations, and every protein-coding gene was manually inspected and classified using Gene Ontology terms.
PMCID: PMC1082884  PMID: 15784138
22.  Fuzzy species among recombinogenic bacteria 
BMC Biology  2005;3:6.
It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species.
Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'.
A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.
PMCID: PMC554772  PMID: 15752428
23.  Negative density-distribution relationship in butterflies 
BMC Biology  2005;3:5.
Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention.
We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals), we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship.
We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.
PMCID: PMC554103  PMID: 15737240
24.  Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's 
BMC Biology  2005;3:4.
Excessive sequential stereotypy of behavioral patterns (sequential super-stereotypy) in Tourette's syndrome and obsessive compulsive disorder (OCD) is thought to involve dysfunction in nigrostriatal dopamine systems. In sequential super-stereotypy, patients become trapped in overly rigid sequential patterns of action, language, or thought. Some instinctive behavioral patterns of animals, such as the syntactic grooming chain pattern of rodents, have sufficiently complex and stereotyped serial structure to detect potential production of overly-rigid sequential patterns. A syntactic grooming chain is a fixed action pattern that serially links up to 25 grooming movements into 4 predictable phases that follow 1 syntactic rule. New mutant mouse models allow gene-based manipulation of brain function relevant to sequential patterns, but no current animal model of spontaneous OCD-like behaviors has so far been reported to exhibit sequential super-stereotypy in the sense of a whole complex serial pattern that becomes stronger and excessively rigid. Here we used a hyper-dopaminergic mutant mouse to examine whether an OCD-like behavioral sequence in animals shows sequential super-stereotypy. Knockdown mutation of the dopamine transporter gene (DAT) causes extracellular dopamine levels in the neostriatum of these adult mutant mice to rise to 170% of wild-type control levels.
We found that the serial pattern of this instinctive behavioral sequence becomes strengthened as an entire entity in hyper-dopaminergic mutants, and more resistant to interruption. Hyper-dopaminergic mutant mice have stronger and more rigid syntactic grooming chain patterns than wild-type control mice. Mutants showed sequential super-stereotypy in the sense of having more stereotyped and predictable syntactic grooming sequences, and were also more likely to resist disruption of the pattern en route, by returning after a disruption to complete the pattern from the appropriate point in the sequence. By contrast, wild-type mice exhibited weaker forms of the fixed action pattern, and often failed to complete the full sequence.
Sequential super-stereotypy occurs in the complex fixed action patterns of hyper-dopaminergic mutant mice. Elucidation of the basis for sequential super-stereotypy of instinctive behavior in DAT knockdown mutant mice may offer insights into neural mechanisms of overly-rigid sequences of action or thought in human patients with disorders such as Tourette's or OCD.
PMCID: PMC552313  PMID: 15710042
25.  Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling 
BMC Biology  2005;3:3.
The physiological regulation of G protein-coupled receptors, through desensitization and internalization, modulates the length of the receptor signal and may influence the development of tolerance and dependence in response to chronic drug treatment. To explore the importance of receptor regulation, we engineered a series of Gi-coupled receptors that differ in signal length, degree of agonist-induced internalization, and ability to induce adenylyl cyclase superactivation. All of these receptors, based on the kappa opioid receptor, were modified to be receptors activated solely by synthetic ligands (RASSLs). This modification allows us to compare receptors that have the same ligands and effectors, but differ only in desensitization and internalization.
Removal of phosphorylation sites in the C-terminus of the RASSL resulted in a mutant that was resistant to internalization and less prone to desensitization. Replacement of the C-terminus of the RASSL with the corresponding portion of the mu opioid receptor eliminated the induction of AC superactivation, without disrupting agonist-induced desensitization or internalization. Surprisingly, removal of phosphorylation sites from this chimera resulted in a receptor that is constitutively internalized, even in the absence of agonist. However, the receptor still signals and desensitizes in response to agonist, indicating normal G-protein coupling and partial membrane expression.
These studies reveal that internalization, desensitization and adenylyl cyclase superactivation, all processes that decrease chronic Gi-receptor signals, are independently regulated. Furthermore, specific mutations can radically alter superactivation or internalization without affecting the efficacy of acute Gi signaling. These mutant RASSLs will be useful for further elucidating the temporal dynamics of the signaling of G protein-coupled receptors in vitro and in vivo.
PMCID: PMC551613  PMID: 15707483

Results 1-25 (27)