Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels 
BMC Biochemistry  2000;1:3.
In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels.
The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained.
A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.
PMCID: PMC29059  PMID: 11231883
2.  Identification of sites phosphorylated by the vaccinia virus B1R kinase in viral protein H5R 
BMC Biochemistry  2000;1:2.
Vaccinia virus gene B1R encodes a serine/threonine protein kinase. In vitro this protein kinase phosphorylates ribosomal proteins Sa and S2 and vaccinia virus protein H5R, proteins that become phosphorylated during infection. Nothing is known about the sites phosphorylated on these proteins or the general substrate specificity of the kinase. The work described is the first to address these questions.
Vaccinia virus protein H5R was phosphorylated by the B1R protein kinase in vitro, digested with V8 protease, and phosphopeptides separated by HPLC. The N-terminal sequence of one radioactively labelled phosphopeptide was determined and found to correspond to residues 81-87 of the protein, with Thr-84 and Thr-85 being phosphorylated. A synthetic peptide based on this region of the protein was shown to be a substrate for the B1R protein kinase, and the extent of phosphorylation was substantially decreased if either Thr residue was replaced by an Ala.
We have identified the first phosphorylation site for the vaccinia virus B1R protein kinase. This gives important information about the substrate-specificity of the enzyme, which differs from that of other known protein kinases. It remains to be seen whether the same site is phosphorylated in vivo.
PMCID: PMC29058  PMID: 11001589
3.  DNA loops and semicatenated DNA junctions 
BMC Biochemistry  2000;1:1.
Alternative DNA conformations are of particular interest as potential signals to mark important sites on the genome. The structural variability of CA microsatellites is particularly pronounced; these are repetitive poly(CA) · poly(TG) DNA sequences spread in all eukaryotic genomes as tracts of up to 60 base pairs long. Many in vitro studies have shown that the structure of poly(CA) · poly(TG) can vary markedly from the classical right handed DNA double helix and adopt diverse alternative conformations. Here we have studied the mechanism of formation and the structure of an alternative DNA structure, named Form X, which was observed previously by polyacrylamide gel electrophoresis of DNA fragments containing a tract of the CA microsatellite poly(CA) · poly(TG) but had not yet been characterized.
Formation of Form X was found to occur upon reassociation of the strands of a DNA fragment containing a tract of poly(CA) · poly(TG), in a process strongly stimulated by the nuclear proteins HMG1 and HMG2. By inserting Form X into DNA minicircles, we show that the DNA strands do not run fully side by side but instead form a DNA knot. When present in a closed DNA molecule, Form X becomes resistant to heating to 100°C and to alkaline pH.
Our data strongly support a model of Form X consisting in a DNA loop at the base of which the two DNA duplexes cross, with one of the strands of one duplex passing between the strands of the other duplex, and reciprocally, to form a semicatenated DNA junction also called a DNA hemicatenane.
PMCID: PMC29057  PMID: 11001588

Results 1-3 (3)