Search tips
Search criteria

Results 1-25 (40)

Clipboard (0)
Year of Publication
Document Types
1.  Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF 
BMC Biochemistry  2008;9:33.
To develop antibacterial agents having novel modes of action against bacterial cell wall biosynthesis, we targeted the essential MurF enzyme of the antibiotic resistant pathogen Pseudomonas aeruginosa. MurF catalyzes the formation of a peptide bond between D-Alanyl-D-Alanine (D-Ala-D-Ala) and the cell wall precursor uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (UDP-MurNAc-Ala-Glu-meso-A2pm) with the concomitant hydrolysis of ATP to ADP and inorganic phosphate, yielding UDP-N-acetylmuramyl-pentapeptide. As MurF acts on a dipeptide, we exploited a phage display approach to identify peptide ligands having high binding affinities for the enzyme.
Screening of a phage display 12-mer library using purified P. aeruginosa MurF yielded to the identification of the MurFp1 peptide. The MurF substrate UDP-MurNAc-Ala-Glumeso-A2pm was synthesized and used to develop a sensitive spectrophotometric assay to quantify MurF kinetics and inhibition. MurFp1 acted as a weak, time-dependent inhibitor of MurF activity but was a potent inhibitor when MurF was pre-incubated with UDP-MurNAc-Ala-Glu-meso-A2pm or ATP. In contrast, adding the substrate D-Ala-D-Ala during the pre-incubation nullified the inhibition. The IC50 value of MurFp1 was evaluated at 250 μM, and the Ki was established at 420 μM with respect to the mixed type of inhibition against D-Ala-D-Ala.
MurFp1 exerts its inhibitory action by interfering with the utilization of D-Ala-D-Ala by the MurF amide ligase enzyme. We propose that MurFp1 exploits UDP-MurNAc-Ala-Glu-meso-A2pm-induced structural changes for better interaction with the enzyme. We present the first peptide inhibitor of MurF, an enzyme that should be exploited as a target for antimicrobial drug development.
PMCID: PMC2626591  PMID: 19099588
2.  Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity 
BMC Biochemistry  2008;9:32.
Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction.
Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9–19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity.
The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients.
PMCID: PMC2605449  PMID: 19036170
3.  Lipid bilayer composition influences small multidrug transporters 
BMC Biochemistry  2008;9:31.
Membrane proteins are influenced by their surrounding lipids. We investigate the effect of bilayer composition on the membrane transport activity of two members of the small multidrug resistance family; the Escherichia coli transporter, EmrE and the Mycobacterium tuberculosis, TBsmr. In particular we address the influence of phosphatidylethanolamine and anionic lipids on the activity of these multidrug transporters. Phosphatidylethanolamine lipids are native to the membranes of both transporters and also alter the lateral pressure profile of a lipid bilayer. Lipid bilayer lateral pressures affect membrane protein insertion, folding and activity and have been shown to influence reconstitution, topology and activity of membrane transport proteins.
Both EmrE and TBsmr are found to exhibit a similar dependence on lipid composition, with phosphatidylethanolamine increasing methyl viologen transport. Anionic lipids also increase transport for both EmrE and TBsmr, with the proteins showing a preference for their most prevalent native anionic lipid headgroup; phosphatidylglycerol for EmrE and phosphatidylinositol for TBsmr.
These findings show that the physical state of the membrane modifies drug transport and that substrate translocation is dependent on in vitro lipid composition. Multidrug transport activity seems to respond to alterations in the lateral forces exerted upon the transport proteins by the bilayer.
PMCID: PMC2605743  PMID: 19032749
4.  An earthworm protease cleaving serum fibronectin and decreasing HBeAg in HepG2.2.15 cells 
BMC Biochemistry  2008;9:30.
Virus-binding activity is one of the important functions of fibronectin (FN). It has been reported that a high concentration of FN in blood improves the transmission frequency of hepatitis viruses. Therefore, to investigate a protease that hydrolyzes FN rapidly is useful to decrease the FN concentration in blood and HBV infection. So far, however, no specific protease digesting FN in serum has been reported.
We employed a purified earthworm protease to digest serum proteins. The rapidly cleaved protein (FN) was identified by MALDI-TOF MS and western blotting. The cleavage sites were determined by N-terminus amino acid residues sequencing. The protease was orally administrated to rats to investigate whether serum FN in vivo became decreased. The serum FN was determined by western blotting and ELISA. In cytological studies, the protease was added to the medium in the culture of HepG2.2.15 cells and then HBsAg and HBeAg were determined by ELISA.
The protease purified from earthworm Eisenia fetida was found to function as a fibronectinase (FNase). The cleavage sites on FN by the FNase were at R and K, exhibiting a trypsin alkaline serine-like function. The earthworm fibronectinase (EFNase) cleaved FN at four sites, R259, R1005, K1557 and R2039, among which the digested fragments at R259, K1557 and R2039 were related to the virus-binding activity as reported. The serum FN was significantly decreased when the earthworm fibronectinase was orally administrated to rats. The ELISA results showed that the secretion of HBeAg from HepG2.2.15 cells was significantly inhibited in the presence of the FNase.
The earthworm fibronectinase (EFNase) cleaves FN much faster than the other proteins in serum, showing a potential to inhibit HBV infection through its suppressing the level of HBeAg. This suggests that EFNase is probably used as one of the candidates for the therapeutic agents to treat hepatitis virus infection.
PMCID: PMC2611985  PMID: 19025649
5.  The FF domains of yeast U1 snRNP protein Prp40 mediate interactions with Luc7 and Snu71 
BMC Biochemistry  2008;9:29.
The FF domain is conserved across all eukaryotes and usually acts as an adaptor module in RNA metabolism and transcription. Saccharomyces cerevisiae encodes two FF domain proteins, Prp40, a component of the U1 snRNP, and Ypr152c, a protein of unknown function. The structure of Prp40, its relationship to other proteins within the U1 snRNP, and its precise function remain little understood.
Here we have investigated the essentiality and interaction properties of the FF domains of yeast Prp40. We show that the C-terminal two FF domains of Prp40 are dispensable. Deletion of additional FF domains is lethal. The first FF domain of Prp40 binds to U1 protein Luc7 in yeast two-hybrid and GST pulldown experiments. FF domains 2 and 3 bind to Snu71, another known U1 protein. Peptide array screens identified binding sites for FF1-2 within Snu71 (NDVHY) and for FF1 within Luc7 (ϕ[FHL] × [KR] × [GHL] with ϕ being a hydrophobic amino acid).
Prp40, Luc7, and Snu71 appear to form a subcomplex within the yeast U1snRNP. Our data suggests that the N-terminal FF domains are critical for these interactions. Crystallization of Prp40, Luc7, and Snu71 have failed so far but co-crystallization of pairs or the whole tri-complex may facilitate crystallographic and further functional analysis.
PMCID: PMC2613882  PMID: 19014439
6.  Displacement affinity chromatography of protein phosphatase one (PP1) complexes 
BMC Biochemistry  2008;9:28.
Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif.
We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex.
This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.
PMCID: PMC2587467  PMID: 19000314
7.  Deubiquitylating enzymes and disease 
BMC Biochemistry  2008;9(Suppl 1):S3.
Deubiquitylating enzymes (DUBs) can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin), including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582804  PMID: 19007433
8.  The UPS: a promising target for breast cancer treatment 
BMC Biochemistry  2008;9(Suppl 1):S2.
During the past decade, progress in endocrine therapy and the use of trastuzumab has significantly contributed to the decline in breast cancer mortality for hormone receptor-positive and ERBB2 (HER2)-positive cases, respectively. As a result of these advances, a breast cancer cluster with poor prognosis that is negative for the estrogen receptor (ESR1), the progesterone receptor (PRGR) and ERBB2 (triple negative) has come to the forefront of medical therapeutic attention. DNA microarray analyses have revealed that this cluster is phenotypically most like the basal-like breast cancer that is caused by deficiencies in the BRCA1 pathways. To gain further improvements in breast cancer survival, new types of drugs might be required, and small molecules targeting the ubiquitin proteasome system have moved into the spotlight. The success of bortezomib in the treatment of multiple myeloma has sent encouraging signals that proteasome inhibitors could be used to treat other types of cancers. In addition, ubiquitin E3s involved in ESR1, ERBB2 or BRCA1 pathways could be ideal targets for therapeutic intervention. This review summarizes the ubiquitin proteasome pathways related to these proteins and discusses the possibility of new drugs for the treatment of breast cancers.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582803  PMID: 19007432
9.  The ubiquitin system, disease, and drug discovery 
BMC Biochemistry  2008;9(Suppl 1):S7.
The ubiquitin system of protein modification has emerged as a crucial mechanism involved in the regulation of a wide array of cellular processes. As our knowledge of the pathways in this system has grown, so have the ties between the protein ubiquitin and human disease. The power of the ubiquitin system for therapeutic benefit blossomed with the approval of the proteasome inhibitor Velcade in 2003 by the FDA. Current drug discovery activities in the ubiquitin system seek to (i) expand the development of new proteasome inhibitors with distinct mechanisms of action and improved bioavailability, and (ii) validate new targets. This review summarizes our current understanding of the role of the ubiquitin system in various human diseases ranging from cancer, viral infection and neurodegenerative disorders to muscle wasting, diabetes and inflammation. I provide an introduction to the ubiquitin system, highlight some emerging relationships between the ubiquitin system and disease, and discuss current and future efforts to harness aspects of this potentially powerful system for improving human health.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582801  PMID: 19007437
10.  Role of the UPS in Liddle syndrome 
BMC Biochemistry  2008;9(Suppl 1):S5.
Hypertension is a serious medical problem affecting a large population worldwide. Liddle syndrome is a hereditary form of early onset hypertension caused by mutations in the epithelial Na+ channel (ENaC). The mutated region, called the PY (Pro-Pro-x-Tyr) motif, serves as a binding site for Nedd4-2, an E3 ubiquitin ligase from the HECT family. Nedd4-2 binds the ENaC PY motif via its WW domains, normally leading to ENaC ubiquitylation and endocytosis, reducing the number of active channels at the plasma membrane. In Liddle syndrome, this endocytosis is impaired due to the inability of the mutated PY motif in ENaC to properly bind Nedd4-2. This leads to accumulation of active channels at the cell surface and increased Na+ (and fluid) absorption in the distal nephron, resulting in elevated blood volume and blood pressure. Small molecules/compounds that destabilize cell surface ENaC, or enhance Nedd4-2 activity in the kidney, could potentially serve to alleviate hypertension.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582799  PMID: 19007435
11.  HPV E6, E6AP and cervical cancer 
BMC Biochemistry  2008;9(Suppl 1):S4.
Every year, approximately 470,000 new cases of cervical cancer are diagnosed and approximately 230,000 women worldwide die of the disease, with the majority (~80%) of these cases and deaths occurring in developing countries. Human papillomaviruses (HPVs) are the etiological agents in nearly all cases (99.7%) of cervical cancer, and the HPV E6 protein is one of two viral oncoproteins that is expressed in virtually all HPV-positive cancers. E6 hijacks a cellular ubiquitin ligase, E6AP, resulting in the ubiquitylation and degradation of the p53 tumor suppressor, as well as several other cellular proteins. While the recent introduction of prophylactic vaccines against specific HPV types offers great promise for prevention of cervical cancer, there remains a need for therapeutics. Biochemical characterization of E6 and E6AP has suggested approaches for interfering with the activities of these proteins that could be useful for this purpose.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582798  PMID: 19007434
12.  The UPS in diabetes and obesity 
BMC Biochemistry  2008;9(Suppl 1):S6.
Type 2 diabetes is caused by defects in both insulin signaling and insulin secretion. Though the role of the ubiquitin proteasome system (UPS) in the pathogenesis of type 2 diabetes remains largely unexplored, the few examples present in the literature are interesting and suggest targets for drug development. Studies indicate that insulin resistance can be induced by stimulating the degradation of important molecules in the insulin signaling pathway, in particular the insulin receptor substrate proteins IRS1, IRS2 and the kinase AKT1 (Akt). In addition, a defect in insulin secretion could occur due to UPS-mediated degradation of IRS2 in the β-cells of the pancreas. The UPS also appears to be involved in regulating lipid synthesis in adipocytes and lipid production by the liver and could influence the development of obesity. Other possible mechanisms for inducing defects in insulin signaling and secretion remain to be explored, including the role of ubiquitylation in insulin receptor internalization and trafficking.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582800  PMID: 19007436
13.  Targeting the UPS as therapy in multiple myeloma 
BMC Biochemistry  2008;9(Suppl 1):S1.
The coordinated regulation of cellular protein synthesis and degradation is essential for normal cellular functioning. The ubiquitin proteasome system mediates the intracellular protein degradation that is required for normal cellular homeostasis. The 26S proteasome is a multi-enzyme protease that degrades redundant proteins; conversely, inhibition of proteasomal degradation results in intracellular aggregation of unwanted proteins and cell death. This observation led to the development of proteasome inhibitors as therapeutics for use in cancer. The clinical applicability of targeting proteasomes is exemplified by the recent FDA approval of the first proteasome inhibitor, bortezomib, for the treatment of relapsed/refractory multiple myeloma. Although bortezomib represents a major advance in the treatment of this disease, it can be associated with toxicity and the development of drug resistance. Importantly, extensive preclinical studies suggest that combination therapies can both circumvent drug resistance and reduce toxicity. In addition, promising novel proteasome inhibitors, which are distinct from bortezomib, and exhibit equipotent anti-multiple myeloma activities, are undergoing clinical evaluation in order to improve patient outcome in multiple myeloma.
Republished from Current BioData's Targeted Proteins database (TPdb; ).
PMCID: PMC2582802  PMID: 19007431
14.  Construction of recB-recD genetic fusion and functional analysis of RecBDC fusion enzyme in Escherichia coli 
BMC Biochemistry  2008;9:27.
recD, located between recB and argA, encodes the smallest polypeptide (60 kDa) of the heterotrimeric enzyme RecBCD in Escherichia coli. RecD is a 5'-3' helicase and is required for the nuclease activity of RecBCD and for tight binding to dsDNA ends. Here, we have tested the hypothesis that RecD regulates the structure and activities of RecBCD, including RecA loading.
To characterize its regulatory functions, recD was genetically fused to recB through deletion and substitution mutations. The recB-recD fusion led to a decreased amount of the heterotrimer. Both fusion mutants proved to be recombination proficient, viable and resistant to DNA damaging agents, and to have DNA unwinding, ATP-dependent dsDNA exonuclease and Chi genetic activities.
Our findings suggest that the recB-recD fusion may form a RecBD fusion protein and therefore affect RecD assembly, but this does not change the three-dimensional structure of the heterotrimer.
PMCID: PMC2586629  PMID: 18847457
15.  Immunoaffinity purification and characterization of mitochondrial membrane-bound D-3-hydroxybutyrate dehydrogenase from Jaculus orientalis 
BMC Biochemistry  2008;9:26.
The interconversion of two important energy metabolites, 3-hydroxybutyrate and acetoacetate (the major ketone bodies), is catalyzed by D-3-hydroxybutyrate dehydrogenase (BDH1: EC, a NAD+-dependent enzyme. The eukaryotic enzyme is bound to the mitochondrial inner membrane and harbors a unique lecithin-dependent activity. Here, we report an advanced purification method of the mammalian BDH applied to the liver enzyme from jerboa (Jaculus orientalis), a hibernating rodent adapted to extreme diet and environmental conditions.
Purifying BDH from jerboa liver overcomes its low specific activity in mitochondria for further biochemical characterization of the enzyme. This new procedure is based on the use of polyclonal antibodies raised against BDH from bacterial Pseudomonas aeruginosa. This study improves the procedure for purification of both soluble microbial and mammalian membrane-bound BDH. Even though the Jaculus orientalis genome has not yet been sequenced, for the first time a D-3-hydroxybutyrate dehydrogenase cDNA from jerboa was cloned and sequenced.
This study applies immunoaffinity chromatography to purify BDH, the membrane-bound and lipid-dependent enzyme, as a 31 kDa single polypeptide chain. In addition, bacterial BDH isolation was achieved in a two-step purification procedure, improving the knowledge of an enzyme involved in the lipid metabolism of a unique hibernating mammal. Sequence alignment revealed conserved putative amino acids for possible NAD+ interaction.
PMCID: PMC2572057  PMID: 18826626
16.  The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin 
BMC Biochemistry  2008;9:25.
Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed.
The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-α-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association.
We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.
PMCID: PMC2567967  PMID: 18811945
17.  Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods 
BMC Biochemistry  2008;9:24.
The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI) in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII) in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS), which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS.
Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K) of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine.
Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine inhibition of NAGS to activation was gradual, from complete inhibition of bacterial NAGS, to partial inhibition of fish NAGS, to activation of frog and mammalian NAGS. This change also coincided with the conquest of land by amphibians and mammals.
PMCID: PMC2566978  PMID: 18801197
18.  YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules 
BMC Biochemistry  2008;9:23.
YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs.
We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes.
These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation.
PMCID: PMC2557009  PMID: 18793384
19.  Mitochondrial oxidative phosphorylation in autosomal dominant optic atrophy 
BMC Biochemistry  2008;9:22.
Autosomal dominant optic atrophy (ADOA), a form of progressive bilateral blindness due to loss of retinal ganglion cells and optic nerve deterioration, arises predominantly from mutations in the nuclear gene for the mitochondrial GTPase, OPA1. OPA1 localizes to mitochondrial cristae in the inner membrane where electron transport chain complexes are enriched. While OPA1 has been characterized for its role in mitochondrial cristae structure and organelle fusion, possible effects of OPA1 on mitochondrial function have not been determined.
Mitochondria from six ADOA patients bearing OPA1 mutations and ten ADOA patients with unidentified gene mutations were studied for respiratory capacity and electron transport complex function. Results suggest that the nuclear DNA mutations that give rise to ADOA in our patient population do not alter mitochondrial electron transport.
We conclude that the pathophysiology of ADOA likely stems from the role of OPA1 in mitochondrial structure or fusion and not from OPA1 support of oxidative phosphorylation.
PMCID: PMC2547100  PMID: 18783614
20.  The central proline rich region of POB1/REPS2 plays a regulatory role in epidermal growth factor receptor endocytosis by binding to 14-3-3 and SH3 domain-containing proteins 
BMC Biochemistry  2008;9:21.
The human POB1/REPS2 (Partner of RalBP1) protein is highly conserved in mammals where it has been suggested to function as a molecular scaffold recruiting proteins involved in vesicular traffic and linking them to the actin cytoskeleton remodeling machinery. More recently POB1/REPS2 was found highly expressed in androgen-dependent prostate cancer cell lines, while one of its isoforms (isoform 2) is down regulated during prostate cancer progression.
In this report we characterize the central proline rich domain of POB1/REPS2 and we describe for the first time its functional role in receptor endocytosis. We show that the ectopic expression of this domain has a dominant negative effect on the endocytosis of activated epidermal growth factor receptor (EGFR) while leaving transferrin receptor endocytosis unaffected. By a combination of different approaches (phage display, bioinformatics predictions, peptide arrays, mutagenic analysis, in vivo co-immunoprecipitation), we have identified two closely spaced binding motifs for 14-3-3 and for the SH3 of the proteins Amphiphysin II and Grb2. Differently from wild type, proline rich domains that are altered in these motifs do not inhibit EGFR endocytosis, suggesting that these binding motifs play a functional role in this process.
Our findings are relevant to the characterization of the molecular mechanism underlying the involvement of POB1/REPS2, SH3 and 14-3-3 proteins in receptor endocytosis, suggesting that 14-3-3 could work by bridging the EGF receptor and the scaffold protein POB1/REPS2.
PMCID: PMC2494995  PMID: 18647389
21.  Functional and biochemical characterization of the 20S proteasome in a yeast temperature-sensitive mutant, rpt6-1 
BMC Biochemistry  2008;9:20.
Rpt6-1 is a thermosensitive yeast mutant with a deletion of a gene encoding a regulatory subunit of the 26S proteasome, RPT6, which is able to grow at 25°C but not at 37°C. In this study, peptidase activities, activation profiles, and the subunit composition of the 20S proteasome purified from the rpt6-1 mutant was characterized.
The 20S proteasome purified from rpt6-1 exhibited low levels of peptidase activities in the absence of activators, but nearly same activated activities in the presence of activators, suggesting a gating defect in the proteasome channel. Detailed analyses of the composition of the 20S proteasome through separation of all subunits by two-dimensional gel electrophoresis followed by identification of each subunit using MALDI-TOF-MS revealed that two subunits, α1 and α7, differed from those of wild-type cells in both electrophoretic mobility and pI values. The changes in these two α-subunits were apparent at the permissive temperature, but disappeared during stress response at the restrictive temperature. Interestingly, upon disappearance of these changes, the levels of peptidase activity of the 20S proteasome in the rpt6-1 mutant were restored as the wild-type. These results suggest that two different forms of the α-subunits, α1 and α7, block the proteasome channel in the rpt6-1 mutant.
Two α-subunits (α1 and α7) of the 20S proteasome in the rpt6-1 mutant differed from their wild-type counterparts and peptidase activities were found to be lower in the mutant than in the wild-type strain.
PMCID: PMC2515314  PMID: 18644121
22.  Purification and characterization of recombinant human renin for X-ray crystallization studies 
BMC Biochemistry  2008;9:19.
The renin-angiotensin-aldosterone system (RAS) cascade is a major target for the clinical management of hypertension. Although inhibitors of various components of this cascade have been developed successfully, development of renin inhibitors has proven to be problematic. The development of these inhibitors has been hindered by poor bioavailability and complex synthesis. However, despite the challenges of designing renin inhibitors, the enzyme remains a promising target for the development of novel treatments for hypertension. X-ray crystallographic data could greatly assist the design and development of these inhibitors. Here we describe the purification and characterization of recombinant human renin for x-ray crystallization studies.
A cDNA encoding the full length of native human preprorenin (406 amino acid residues) was introduced into the HEK-293 cell line. A clonal cell line expressing prorenin was generated and grown under serum free conditions in a hollow fiber bioreactor. Prorenin was constitutively secreted and purified directly from the conditioned medium. Concanavalin A chromatography effectively enriched and purified prorenin to 90% homogeneity in a single step. Prorenin was converted to active renin by trypsin digestion to remove the propeptide. Active renin was further purified using a cation exchange column followed by a gel filtration column. Biochemical characterization of the recombinant enzyme showed both binding and catalytic properties were essentially identical to previously reported activities for purified renin. Crystals were grown using this material in our X-ray structure studies, and high resolution diffraction was obtained.
This present work describes a simple and efficient method for the generation and purification of active human renin. The protein is highly pure and is suitable for supporting structural biology efforts.
PMCID: PMC2453115  PMID: 18582379
23.  Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog 
BMC Biochemistry  2008;9:18.
A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate) was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ) in vitro, its stability towards phosphodiesterase and its ability to permeate into cultured eukaryotic cells using resonance energy transfer based indicators, and conventional fluorescence imaging.
The Pharos fluorophore is characterized by a Stokes shift of 42 nm with an absorption maximum at 575 nm and the emission peaking at 617 nm. The quantum yield is 30%. Incubation of the compound to RIIα and RIIβ subunits increases the amplitude of excitation and absorption maxima significantly; no major change was observed with RIα. In vitro binding of the compound to RIα subunit and activation of the PKA-Iα holoenzyme was essentially equivalent to cAMP; RII subunits bound the fluorescent analog up to ten times less efficiently, resulting in about two times reduced apparent activation constants of the holoenzymes compared to cAMP. The cellular uptake of the fluorescent analog was investigated by cAMP indicators. It was estimated that about 7 μM of the fluorescent cAMP analog is available to the indicator after one hour of incubation and that about 600 μM of the compound had to be added to intact cells to half-maximally dissociate a PKA type IIα sensor.
The novel analog combines good membrane permeability- comparable to 8-Br-cAMP – with superior spectral properties of a modern, red-shifted fluorophore. GFP-tagged regulatory subunits of PKA and the analog co-localized. Furthermore, it is a potent, PDE-resistant activator of PKA-I and -II, suitable for in vitro applications and spatial distribution evaluations in living cells.
PMCID: PMC2443153  PMID: 18578870
24.  Molecular evolution of B6 enzymes: Binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme 
BMC Biochemistry  2008;9:17.
The pyridoxal-5'-phosphate (PLP)-dependent or vitamin B6-dependent enzymes that catalyze manifold reactions in the metabolism of amino acids belong to no fewer than four evolutionarily independent protein families. The multiple evolutionary origin and the essential mechanistic role of PLP in these enzymes argue for the cofactor having arrived on the evolutionary scene before the emergence of the respective apoenzymes and having played a dominant role in the molecular evolution of the B6 enzyme families. Here we report on an attempt to re-enact the emergence of a PLP-dependent protoenzyme. The starting protein was pancreatic ribonuclease A (RNase), in which active-site Lys41 or Lys7 readily form a covalent adduct with PLP.
We screened the PLP adduct of wild-type RNase and two variant RNases (K7R and K41R) for catalytic effects toward L- and D-amino acids. RNase(K41R)-PLP, in which the cofactor is bound through an imine linkage to Lys7, qualifies for a model proto-B6 enzyme by the following criteria: (1) covalent linkage of PLP (internal aldimine); (2) catalytic activity toward amino acids that depends on formation of an imine linkage with the substrate (external aldimine); (3) adjoining binding sites for the cofactor and amino acid moiety that facilitate the transimination reaction of the internal to the external aldimine and stabilize the resulting noncovalent complex of the coenzyme-substrate adduct with the protein; (4) reaction specificity, the only detectable reactions being racemization of diverse amino acids and β-decarboxylation of L-aspartate; (5) acceleration factors for racemization and β-decarboxylation of >103 over and above that of PLP alone; (6) ribonuclease activity that is 103-fold lower than that of wild-type RNase, attenuation of a pre-existing biological activity being indispensable for the further evolution as a PLP-dependent protoenzyme.
A single amino acid substitution (Lys41Arg) and covalent binding of PLP to active-site Lys7 suffice to turn pancreatic ribonuclease A into a protein catalyst that complies with all plausible criteria for a proto-B6 enzyme. The study thus retraces in a model system what may be considered the committed step in the molecular evolution of a potential ancestor of a B6 enzyme family.
PMCID: PMC2443152  PMID: 18565210
25.  Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga 
BMC Biochemistry  2008;9:16.
An interaction between lectins from marine algae and PLA2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA2 and its complex.
This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity.
The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm.
PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound.
The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules.
PMCID: PMC2443151  PMID: 18534036

Results 1-25 (40)