Search tips
Search criteria

Results 1-25 (50)

Clipboard (0)
Year of Publication
Document Types
1.  Streptavidin-Binding Peptide (SBP)-tagged SMC2 allows single-step affinity fluorescence, blotting or purification of the condensin complex 
BMC Biochemistry  2010;11:50.
Cell biologists face the need to rapidly analyse their proteins of interest in order to gain insight into their function. Often protein purification, cellular localisation and Western blot analyses can be multi-step processes, where protein is lost, activity is destroyed or effective antibodies have not yet been generated.
To develop a method that simplifies the critical protein analytical steps of the laboratory researcher, leading to easy, efficient and rapid protein purification, cellular localisation and quantification.
We have tagged the SMC2 subunit of the condensin complex with the Streptavidin-Binding Peptide (SBP), optimising and demonstrating the efficacious use of this tag for performing these protein analytical steps. Based on silver staining, and Western analysis, SBP delivered an outstanding specificity and purity of the condensin complex. We also developed a rapid and highly specific procedure to localise SBP-tagged proteins in cells in a single step procedure thus bypassing the need for using antibodies. Furthermore we have shown that the SBP tag can be used for isolating tagged proteins from chemically cross-linked cell populations for capturing DNA-protein interactions.
The small 38-amino acid synthetic SBP offers the potential to successfully perform all four critical analytical procedures as a single step and should have a general utility for the study of many proteins and protein complexes.
PMCID: PMC3022668  PMID: 21194474
2.  Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsive to low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae 
BMC Biochemistry  2010;11:49.
The reversible oxidation of protein SH groups has been considered to be the basis of redox regulation by which changes in hydrogen peroxide (H2O2) concentrations may control protein function. Several proteins become S-glutathionylated following exposure to H2O2 in a variety of cellular systems. In yeast, when using a high initial H2O2 dose, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the major target of S-glutathionylation which leads to reversible inactivation of the enzyme. GAPDH inactivation by H2O2 functions to reroute carbohydrate flux to produce NADPH. Here we report the effect of low regulatory H2O2 doses on GAPDH activity and expression in Saccharomyces cerevisiae.
A calibrated and controlled method of H2O2 delivery - the steady-state titration - in which cells are exposed to constant, low, and known H2O2 concentrations, was used in this study. This technique, contrary to the common bolus addition, allows determining which H2O2 concentrations trigger specific biological responses. This work shows that both in exponential- and stationary-phase cells, low regulatory H2O2 concentrations induce a large upregulation of catalase, a fingerprint of the cellular oxidative stress response, but GAPDH oxidation and the ensuing activity decrease are only observed at death-inducing high H2O2 doses. GAPDH activity is constant upon incubation with sub-lethal H2O2 doses, but in stationary-phase cells there is a differential response in the expression of the three GAPDH isoenzymes: Tdh1p is strongly upregulated while Tdh2p/Tdh3p are slightly downregulated.
In yeast GAPDH activity is largely unresponsive to low to moderate H2O2 doses. This points to a scenario where (a) cellular redoxins efficiently cope with levels of GAPDH oxidation induced by a vast range of sub-lethal H2O2 concentrations, (b) inactivation of GAPDH cannot be considered a sensitive biomarker of H2O2-induced oxidation in vivo. Since GAPDH inactivation only occurs at cell death-inducing high H2O2 doses, GAPDH-dependent rerouting of carbohydrate flux is probably important merely in pathophysiological situations. This work highlights the importance of studying H2O2-induced oxidative stress using concentrations closer to the physiological for determining the importance of protein oxidation phenomena in the regulation of cellular metabolism.
PMCID: PMC3019127  PMID: 21189144
3.  Identification and characterization of a bacterial glutamic peptidase 
BMC Biochemistry  2010;11:47.
Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized.
We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases.
Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.
PMCID: PMC3009609  PMID: 21122090
4.  The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor α with the small GTPase Rac 
BMC Biochemistry  2010;11:48.
RhoGDI proteins are important regulators of the small GTPase Rac, because they shuttle Rac from the cytoplasm to membranes and also protect Rac from activation, deactivation and degradation. How the binding and release of Rac from RhoGDI is regulated is not precisely understood.
We report that the non-receptor tyrosine kinase Fer is able to phosphorylate RhoGDIα and form a direct protein complex with it. This interaction is mediated by the C-terminal end of RhoGDIα. Activation of Fer by reactive oxygen species caused increased phosphorylation of RhoGDIα and pervanadate treatment further augmented this. Tyrosine phosphorylation of RhoGDIα by Fer prevented subsequent binding of Rac to RhoGDIα, but once a RhoGDIα-Rac complex was formed, the Fer kinase was not able to cause Rac release through tyrosine phosphorylation of preformed RhoGDIα-Rac complexes.
These results identify tyrosine phosphorylation of RhoGDIα by Fer as a mechanism to regulate binding of RhoGDIα to Rac.
PMCID: PMC3009610  PMID: 21122136
5.  The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: Restricted substrate preference towards very long chain fatty acyl thioesters 
BMC Biochemistry  2010;11:46.
The apicomplexan Cryptosporidium parvum genome possesses a 25-kb intronless open reading frame (ORF) that predicts a multifunctional Type I fatty acid synthase (CpFAS1) with at least 21 enzymatic domains. Although the architecture of CpFAS1 resembles those of bacterial polyketide synthases (PKSs), this megasynthase is predicted to function as a fatty acyl elongase as our earlier studies have indicated that the N-terminal loading unit (acyl-[ACP] ligase) prefers using intermediate to long chain fatty acids as substrates, and each of the three internal elongation modules contains a complete set of enzymes to produce a saturated fatty acyl chain. Although the activities of almost all domains were confirmed using recombinant proteins, that of the C-terminal reductase domain (CpFAS1-R) was yet undetermined. In fact, there were no published studies to report the kinetic features of any reductase domains in bacterial PKSs using purified recombinant or native proteins.
In the present study, the identity of CpFAS1-R as a reductase is confirmed by in silico analysis on sequence similarity and characteristic motifs. Phylogenetic analysis based on the R-domains supports a previous notion on the bacterial origin of apicomplexan Type I FAS/PKS genes. We also developed a novel assay using fatty acyl-CoAs as substrates, and determined that CpFAS1-R could only utilize very long chain fatty acyl-CoAs as substrates (i.e., with activity on C26 > C24 > C22 > C20, but no activity on C18 and C16). It was capable of using both NADPH and NADH as electron donors, but prefers NADPH to NADH. The activity of CpFAS1-R displayed allosteric kinetics towards C26 hexacosanoyl CoA as a substrate (h = 2.0; Vmax = 32.8 nmol min-1 mg-1 protein; and K50 = 0.91 mM).
We have confirmed the activity of CpFAS1-R by directly assaying its substrate preference and kinetic parameters, which is for the first time for a Type I FAS, PKS or non-ribosomal peptide synthase (NRPS) reductase domain. The restricted substrate preference towards very long chain fatty acyl thioesters may be an important feature for this megasynthase to avoid the release of product(s) with undesired lengths.
PMCID: PMC2995488  PMID: 21092192
6.  A sequence-dependent exonuclease activity from Tetrahymena thermophila 
BMC Biochemistry  2010;11:45.
Telomere function requires a highly conserved G rich 3'- overhang. This structure is formed by 5'-resection of the C-rich telomere strand. However, while many nucleases have been suggested to play a role in processing, it is not yet clear which nucleases carry out this 5'-resection.
We used biochemical purification to identify a sequence-dependent exonuclease activity in Tetrahymena thermophila cell extracts. The nuclease activity showed specificity for 5'-ends containing AA or AC sequences, unlike Exo1, which showed sequence-independent cleavage. The Tetrahymena nuclease was active on both phosphorylated and unphosphorylated substrates whereas Exo1 requires a 5'-phosphate for cleavage.
The specificities of the enzyme indicate that this novel Tetrahymena exonuclease is distinct from Exo1 and has properties required for 3'-overhang formations at telomeres.
PMCID: PMC2998447  PMID: 21080963
7.  High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK 
BMC Biochemistry  2010;11:44.
Chaperones facilitate proper folding of peptides and bind to misfolded proteins as occurring during periods of cell stress. Complexes of peptides with chaperones induce peptide-directed immunity. Here we analyzed the interaction of (pre)proinsulin with the best characterized chaperone of the hsp70 family, bacterial DnaK.
Of a set of overlapping 13-mer peptides of human preproinsulin high affinity binding to DnaK was found for the signal peptide and one further region in each proinsulin domain (A- and B-chain, C-peptide). Among the latter, peptides covering most of the B-chain region B11-23 exhibited strongest binding, which was in the range of known high-affinity DnaK ligands, dissociation equilibrium constant (K'd) of 2.2 ± 0.4 μM. The B-chain region B11-23 is located at the interface between two insulin molecules and not accessible in insulin oligomers. Indeed, native insulin oligomers showed very low DnaK affinity (K'd 67.8 ± 20.8 μM) whereas a proinsulin molecule modified to prevent oligomerization showed good binding affinity (K'd 11.3 ± 7.8 μM).
Intact insulin only weakly interacts with the hsp70 chaperone DnaK whereas monomeric proinsulin and peptides from 3 distinct proinsulin regions show substantial chaperone binding. Strongest binding was seen for the B-chain peptide B 11-23. Interestingly, peptide B11-23 represents a dominant autoantigen in type 1 diabetes.
PMCID: PMC2994776  PMID: 21059249
8.  Soluble perlecan domain i enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells 
BMC Biochemistry  2010;11:43.
Immobilized recombinant perlecan domain I (PlnDI) binds and modulates the activity of heparin-binding growth factors, in vitro. However, activities for PlnDI, in solution, have not been reported. In this study, we assessed the ability of soluble forms to modulate vascular endothelial growth factor-165 (VEGF165) enhanced capillary tube-like formation, and VEGF receptor-2 phosphorylation of human bone marrow endothelial cells, in vitro.
In solution, PlnDI binds VEGF165 in a heparan sulfate and pH dependent manner. Capillary tube-like formation is enhanced by exogenous PlnDI; however, PlnDI/VEGF165 mixtures combine to enhance formation beyond that stimulated by either PlnDI or VEGF165 alone. PlnDI also stimulates VEGF receptor-2 phosphorylation, and mixtures of PlnDI/VEGF165 reduce the time required for peak VEGF receptor-2 phosphorylation (Tyr-951), and increase Akt phosphorylation. PlnDI binds both immobilized neuropilin-1 and VEGF receptor-2, but has a greater affinity for neuropilin-1. PlnDI binding to neuropilin-1, but not to VEGF receptor-2 is dependent upon the heparan sulfate chains adorning PlnDI. Interestingly, the presence of VEGF165 but not VEGF121 significantly enhances PlnDI binding to Neuropilin-1 and VEGF receptor-2.
Our observations suggest soluble forms of PlnDI are biologically active. Moreover, PlnDI heparan sulfate chains alone or together with VEGF165 can enhance VEGFR-2 signaling and angiogenic events, in vitro. We propose PlnDI liberated during basement membrane or extracellular matrix turnover may have similar activities, in vivo.
PMCID: PMC2987766  PMID: 21047416
9.  Regulation of Ack1 localization and activity by the amino-terminal SAM domain 
BMC Biochemistry  2010;11:42.
The mechanisms that regulate the activity of the nonreceptor tyrosine kinase Ack1 (activated Cdc42-associated kinase) are poorly understood. The amino-terminal region of Ack1 is predicted to contain a sterile alpha motif (SAM) domain. SAM domains share a common fold and mediate protein-protein interactions in a wide variety of proteins. Here, we addressed the importance of the Ack1 SAM domain in kinase activity.
We used immunofluorescence and Western blotting to show that Ack1 deletion mutants lacking the N-terminus displayed significantly reduced autophosphorylation in cells. A minimal construct comprising the N-terminus and kinase domain (NKD) was autophosphorylated, while the kinase domain alone (KD) was not. When expressed in mammalian cells, NKD localized to the plasma membrane, while KD showed a more diffuse cytosolic localization. Co-immunoprecipitation experiments showed a stronger interaction between full length Ack1 and NKD than between full length Ack1 and KD, indicating that the N-terminus was important for Ack1 dimerization. Increasing the local concentration of purified Ack1 kinase domain at the surface of lipid vesicles stimulated autophosphorylation and catalytic activity, consistent with a requirement for dimerization and trans-phosphorylation for activity.
Collectively, the data suggest that the N-terminus of Ack1 promotes membrane localization and dimerization to allow for autophosphorylation.
PMCID: PMC2987765  PMID: 20979614
10.  The DNA relaxation activity and covalent complex accumulation of Mycobacterium tuberculosis topoisomerase I can be assayed in Escherichia coli: application for identification of potential FRET-dye labeling sites 
BMC Biochemistry  2010;11:41.
Mycobacterium tuberculosis topoisomerase I (MtTOP1) and Escherichia coli topoisomerase I have highly homologous transesterification domains, but the two enzymes have distinctly different C-terminal domains. To investigate the structure-function of MtTOP1 and to target its activity for development of new TB therapy, it is desirable to have a rapid genetic assay for its catalytic activity, and potential bactericidal consequence from accumulation of its covalent complex.
We show that plasmid-encoded recombinant MtTOP1 can complement the temperature sensitive topA function of E. coli strain AS17. Moreover, expression of MtTOP1-G116 S enzyme with the TOPRIM mutation that inhibits DNA religation results in SOS induction and loss of viability in E. coli. The absence of cysteine residues in the MtTOP1 enzyme makes it an attractive system for introduction of potentially informative chemical or spectroscopic probes at specific positions via cysteine mutagenesis. Such probes could be useful for development of high throughput screening (HTS) assays. We employed the AS17 complementation system to screen for sites in MtTOP1 that can tolerate cysteine substitution without loss of complementation function. These cysteine substitution mutants were confirmed to have retained the relaxation activity. One such mutant of MtTOP1 was utilized for fluorescence probe incorporation and fluorescence resonance energy transfer measurement with fluorophore-labeled oligonucleotide substrate.
The DNA relaxation and cleavage complex accumulation of M. tuberculosis topoisomerase I can be measured with genetic assays in E. coli, facilitating rapid analysis of its activities, and discovery of new TB therapy targeting this essential enzyme.
PMCID: PMC2958883  PMID: 20920291
11.  Novel β-N-acetylglucosaminidases from Vibrio harveyi 650: Cloning, expression, enzymatic properties, and subsite identification 
BMC Biochemistry  2010;11:40.
Since chitin is a highly abundant natural biopolymer, many attempts have been made to convert this insoluble polysaccharide into commercially valuable products using chitinases and β-N-acetylglucosaminidases (GlcNAcases). We have previously reported the structure and function of chitinase A from Vibrio harveyi 650. This study t reports the identification of two GlcNAcases from the same organism and their detailed functional characterization.
The genes encoding two new members of family-20 GlcNAcases were isolated from the genome of V. harveyi 650, cloned and expressed at a high level in E. coli. VhNag1 has a molecular mass of 89 kDa and an optimum pH of 7.5, whereas VhNag2 has a molecular mass of 73 kDa and an optimum pH of 7.0. The recombinant GlcNAcases were found to hydrolyze all the natural substrates, VhNag2 being ten-fold more active than VhNag1. Product analysis by TLC and quantitative HPLC suggested that VhNag2 degraded chitooligosaccharides in a sequential manner, its highest activity being with chitotetraose. Kinetic modeling of the enzymic reaction revealed that binding at subsites (-2) and (+4) had unfavorable (positive) binding free energy changes and that the binding pocket of VhNag2 contains four GlcNAc binding subsites, designated (-1),(+1),(+2), and (+3).
Two novel GlcNAcases were identified as exolytic enzymes that degraded chitin oligosaccharides, releasing GlcNAc as the end product. In living cells, these intracellular enzymes may work after endolytic chitinases to complete chitin degradation. The availability of the two GlcNAcases, together with the previously-reported chitinase A from the same organism, suggests that a systematic development of the chitin-degrading enzymes may provide a valuable tool in commercial chitin bioconversion.
PMCID: PMC2955587  PMID: 20920218
12.  Similarity of molecular phenotype between known epilepsy gene LGI1 and disease candidate gene LGI2 
BMC Biochemistry  2010;11:39.
The LGI2 (leucine-rich, glioma inactivated 2) gene, a prime candidate for partial epilepsy with pericentral spikes, belongs to a family encoding secreted, beta-propeller domain proteins with EPTP/EAR epilepsy-associated repeats. In another family member, LGI1 (leucine-rich, glioma inactivated 1) mutations are responsible for autosomal dominant lateral temporal epilepsy (ADLTE). Because a few LGI1 disease mutations described in the literature cause secretion failure, we experimentally analyzed the secretion efficiency and subcellular localization of several LGI1 and LGI2 mutant proteins corresponding to observed non-synonymous single nucleotide polymorphisms (nsSNPs) affecting the signal peptide, the leucine-rich repeats and the EAR propeller.
Mapping of disease-causing mutations in the EAR domain region onto a 3D-structure model shows that many of these mutations co-localize at an evolutionary conserved surface region of the propeller. We find that wild-type LGI2 is secreted to the extracellular medium in glycosylated form similarly to LGI1, whereas several mutant proteins tested in this study are secretion-deficient and accumulate in the endoplasmic reticulum. Interestingly, mutations at structurally homologous positions in the EAR domain have the same effect on secretion in LGI1 and LGI2.
This similarity of experimental mislocalization phenotypes for mutations at homologous positions of LGI2 and the established epilepsy gene LGI1 suggests that both genes share a potentially common molecular pathogenesis mechanism that might be the reason for genotypically distinct but phenotypically related forms of epilepsy.
PMCID: PMC2949613  PMID: 20863412
13.  Sex-different hepaticglycogen content and glucose output in rats 
BMC Biochemistry  2010;11:38.
Genes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from in situ perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections.
Out of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions.
Taken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.
PMCID: PMC2955586  PMID: 20863371
14.  The effects of oligomerization on Saccharomyces cerevisiae Mcm4/6/7 function 
BMC Biochemistry  2010;11:37.
Minichromosome maintenance proteins (Mcm) 2, 3, 4, 5, 6 and 7 are related by sequence and form a variety of complexes that unwind DNA, including Mcm4/6/7. A Mcm4/6/7 trimer forms one half of the Mcm2-7 hexameric ring and can be thought of as the catalytic core of Mcm2-7, the replicative helicase in eukaryotic cells. Oligomeric analysis of Mcm4/6/7 suggests that it forms a hexamer containing two Mcm4/6/7 trimers, however, under certain conditions trimeric Mcm4/6/7 has also been observed. The functional significance of the different Mcm4/6/7 oligomeric states has not been assessed. The results of such an assessment would have implications for studies of both Mcm4/6/7 and Mcm2-7.
Here, we show that Saccharomyces cerevisiae Mcm4/6/7 reconstituted from individual subunits exists in an equilibrium of oligomeric forms in which smaller oligomers predominate in the absence of ATP. In addition, we found that ATP, which is required for Mcm4/6/7 activity, shifts the equilibrium towards larger oligomers, likely hexamers of Mcm4/6/7. ATPγS and to a lesser extent ADP also shift the equilibrium towards hexamers. Study of Mcm4/6/7 complexes containing mutations that interfere with the formation of inter-subunit ATP sites (arginine finger mutants) indicates that full activity of Mcm4/6/7 requires all of its ATP sites, which are formed in a hexamer and not a trimer. In keeping with this observation, Mcm4/6/7 binds DNA as a hexamer.
The minimal functional unit of Mcm4/6/7 is a hexamer. One of the roles of ATP binding by Mcm4/6/7 may be to stabilize formation of hexamers.
PMCID: PMC2949612  PMID: 20860810
15.  Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2 
BMC Biochemistry  2010;11:36.
Proteinase-activated-receptor-2 (PAR2) is a seven transmembrane receptor that can activate two separate signaling arms: one through Gαq and Ca2+ mobilization, and a second through recruitment of β-arrestin scaffolds. In some cases downstream targets of the Gαq/Ca2+ signaling arm are directly inhibited by β-arrestins, while in other cases the two pathways are synergistic; thus β-arrestins act as molecular switches capable of modifying the signal generated by the receptor.
Here we demonstrate that PAR2 can activate adenosine monophosphate-activated protein kinase (AMPK), a key regulator of cellular energy balance, through Ca2+-dependent Kinase Kinase β (CAMKKβ), while inhibiting AMPK through interaction with β-arrestins. The ultimate outcome of PAR2 activation depended on the cell type studied; in cultured fibroblasts with low endogenous β-arrestins, PAR2 activated AMPK; however, in primary fat and liver, PAR2 only activated AMPK in β-arrestin-2-/- mice. β-arrestin-2 could be co-immunoprecipitated with AMPK and CAMKKβ under baseline conditions from both cultured fibroblasts and primary fat, and its association with both proteins was increased by PAR2 activation. Addition of recombinant β-arrestin-2 to in vitro kinase assays directly inhibited phosphorylation of AMPK by CAMKKβ on Thr172.
Studies have shown that decreased AMPK activity is associated with obesity and Type II Diabetes, while AMPK activity is increased with metabolically favorable conditions and cholesterol lowering drugs. These results suggest a role for β-arrestin in the inhibition of AMPK signaling, raising the possibility that β-arrestin-dependent PAR2 signaling may act as a molecular switch turning a positive signal to AMPK into an inhibitory one.
PMCID: PMC2955585  PMID: 20858278
16.  Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: A non-conventional hemolysin and a ribosomal RNA methyl transferase 
BMC Biochemistry  2010;11:35.
Mycobacterium tuberculosis is a virulent bacillus causing tuberculosis, a disease responsible for million deaths each year worldwide. In order to understand its mechanism of pathogenesis in humans and to help control tuberculosis, functions of numerous Mycobacterium tuberculosis genes are being characterized. In this study we report the dual functionality of tlyA gene product of Mycobacterium tuberculosis annotated as Rv1694, a 268 amino acid long basic protein.
The recombinant purified Rv1694 protein was found to exhibit hemolytic activity in vitro. It showed concentration and time-dependent hemolysis of rabbit and human erythrocytes. Multiple oligomeric forms (dimers to heptamers) of this protein were seen on the membranes of the lysed erythrocytes. Like the oligomers of conventional, well-known, pore-forming toxins, the oligomers of Rv1694 were found to be resistant to heat and SDS, but were susceptible to reducing agents like β-mercaptoethanol as it had abolished the hemolytic activity of Rv1694 indicating the role of disulfide bond(s). The Rv1694 generated de novo by in vitro transcription and translation also exhibited unambiguous hemolysis confirming the self assembly and oligomerization properties of this protein. Limited proteolytic digestion of this protein has revealed that the amino terminus is susceptible while in solution but is protected in presence of membrane. Striking feature of Rv1694 is its presence on the cell wall of E. coli as visualized by confocal microscopy. The surface expression is consistent with the contact dependent haemolytic ability of E. coli expressing this protein. Also, immune serum specific to this protein inhibits the contact dependent hemolysis. Moreover, Rv1694 protein binds to and forms stable oligomers on the macrophage phagosomal membranes. In addition to all these properties, E. coli expressing Rv1694 was found to be susceptible to the antibiotic capreomycin as its growth was significantly slower than mock vector transformed E. coli. The S30 extract of E. coli expressing the Rv1694 had poor translational activity in presence of capreomycin, further confirming its methylation activity. Finally, incorporation of methyl group of [3H]-S-adenosylmethionine in isolated ribosomes also confirmed its methylation activity.
The Rv1694 has an unusual dual activity. It appears to contain two diverse functions such as haemolytic activity and ribosomal RNA methylation activity. It is possible that the haemolytic activity might be relevant to intra-cellular compartments such as phagosomes rather than cell lysis of erythrocytes and the self-assembly trait may have a potential role after successful entry into macrophages by Mycobacterium tuberculosis.
PMCID: PMC2954847  PMID: 20854656
17.  Characterization of tetracycline modifying enzymes using a sensitive in vivo reporter system 
BMC Biochemistry  2010;11:34.
Increasing our understanding of antibiotic resistance mechanisms is critical. To enable progress in this area, methods to rapidly identify and characterize antibiotic resistance conferring enzymes are required.
We have constructed a sensitive reporter system in Escherichia coli that can be used to detect and characterize the activity of enzymes that act upon the antibiotic, tetracycline and its derivatives. In this system, expression of the lux operon is regulated by the tetracycline repressor, TetR, which is expressed from the same plasmid under the control of an arabinose-inducible promoter. Addition of very low concentrations of tetracycline derivatives, well below growth inhibitory concentrations, resulted in luminescence production as a result of expression of the lux genes carried by the reporter plasmid. Introduction of another plasmid into this system expressing TetX, a tetracycline-inactivating enzyme, caused a marked loss in luminescence due to enzyme-mediated reduction in the intracellular Tc concentration. Data generated for the TetX enzyme using the reporter system could be effectively fit with the known Km and kcat values, demonstrating the usefulness of this system for quantitative analyses.
Since members of the TetR family of repressors regulate enzymes and pumps acting upon almost every known antibiotic and a wide range of other small molecules, reporter systems with the same design as presented here, but employing heterologous TetR-related proteins, could be developed to measure enzymatic activities against a wide range of antibiotics and other compounds. Thus, the assay described here has far-reaching applicability and could be adapted for high-throughput applications.
PMCID: PMC2949611  PMID: 20831817
18.  Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study 
BMC Biochemistry  2010;11:32.
The diversity and function of ligninolytic genes in soil-inhabiting ascomycetes has not yet been elucidated, despite their possible role in plant litter decay processes. Among ascomycetes, Trichoderma reesei is a model organism of cellulose and hemicellulose degradation, used for its unique secretion ability especially for cellulase production. T. reesei has only been reported as a cellulolytic and hemicellulolytic organism although genome annotation revealed 6 laccase-like multicopper oxidase (LMCO) genes. The purpose of this work was i) to validate the function of a candidate LMCO gene from T. reesei, and ii) to reconstruct LMCO phylogeny and perform evolutionary analysis testing for positive selection.
After homologous overproduction of a candidate LMCO gene, extracellular laccase activity was detected when ABTS or SRG were used as substrates, and the recombinant protein was purified to homogeneity followed by biochemical characterization. The recombinant protein, called TrLAC1, has a molecular mass of 104 kDa. Optimal temperature and pH were respectively 40-45°C and 4, by using ABTS as substrate. TrLAC1 showed broad pH stability range of 3 to 7. Temperature stability revealed that TrLAC1 is not a thermostable enzyme, which was also confirmed by unfolding studies monitored by circular dichroism. Evolutionary studies were performed to shed light on the LMCO family, and the phylogenetic tree was reconstructed using maximum-likelihood method. LMCO and classical laccases were clearly divided into two distinct groups. Finally, Darwinian selection was tested, and the results showed that positive selection drove the evolution of sequences leading to well-known laccases involved in ligninolysis. Positively-selected sites were observed that could be used as targets for mutagenesis and functional studies between classical laccases and LMCO from T. reesei.
Homologous production and evolutionary studies of the first LMCO from the biomass-degrading fungus T. reesei gives new insights into the physicochemical parameters and biodiversity in this family.
PMCID: PMC2939539  PMID: 20735824
19.  Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism 
BMC Biochemistry  2010;11:33.
Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes.
Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation.
1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products.
PMCID: PMC2939540  PMID: 20735852
20.  Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae 
BMC Biochemistry  2010;11:31.
Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality.
In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4.
Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.
PMCID: PMC2936869  PMID: 20727152
21.  Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism 
BMC Biochemistry  2010;11:30.
When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions.
The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP) but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes.
The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na+ pump which transports only Na+ upon hydrolysis of ATP. A secondary event, Na+- and ATP-dependent H+ efflux from proteoliposomes, is driven by the electric potential generated by Na+-stimulated ATPase.
PMCID: PMC2928168  PMID: 20691102
22.  Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae 
BMC Biochemistry  2010;11:29.
When eukaryotic cells are deprived of amino acids, uncharged tRNAs accumulate and activate the conserved GCN2 protein kinase. Activated Gcn2p up-regulates the general amino acid control pathway through phosphorylation of the translational initiation factor eIF2. In Saccharomyces cerevisiae, Gcn2p is the only kinase that phosphorylates eIF2 to regulate translation through this mechanism. We addressed changes in yeast growth and tRNA aminoacylation, or charging, during amino acid depletion in the presence and absence of GCN2. tRNA charging was measured using a microarray technique which simultaneously measures all cytosolic tRNAs. A fully prototrophic strain, and its isogenic gcn2Δ counterpart, were used to study depletion for each of the 20 amino acids, with a focus on Trp, Arg, His and Leu, which are metabolically distinct and together provide a good overview on amino acid metabolism.
While the wild-type strain had no observable phenotype upon depletion for any amino acid, the gcn2Δ strain showed slow growth in media devoid of only Trp or Arg. Consistent with the growth phenotypes, profiles of genome-wide tRNA charging revealed significant decrease in cognate tRNA charging only in the gcn2Δ strain upon depletion for Trp or Arg. In contrast, there was no change in tRNA charging during His and Leu depletion in either the wild-type or gcn2Δ strains, consistent with the null effect on growth during loss of these amino acids. We determined that the growth phenotype of Trp depletion is derived from feedback inhibition of aromatic amino acid biosynthesis. By removing Phe and Tyr from the media in addition to Trp, regular growth was restored and tRNATrp charging no longer decreased. The growth phenotype of Arg depletion is derived from unbalanced nitrogen metabolism. By supplementing ornithine upon Arg depletion, both growth and tRNAArg charging were partially restored.
Under mild stress conditions the basal activity of Gcn2p is sufficient to allow for proper adaptation to amino acid depletion. This study highlights the importance of the GCN2 eIF2 kinase pathway for maintaining metabolic homeostasis, contributing to appropriate tRNA charging and growth adaptation in response to culture conditions deficient for the central amino acids, tryptophan and arginine.
PMCID: PMC2921344  PMID: 20684782
23.  Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates 
BMC Biochemistry  2010;11:28.
The β-carbonic anhydrase (CA, EC enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster.
The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM) and more potently by sulfamide (KI of 0.15 mM). Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM).
The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.
PMCID: PMC2918522  PMID: 20659325
24.  Investigation of the chaperone function of the small heat shock protein — AgsA 
BMC Biochemistry  2010;11:27.
A small heat shock protein AgsA was originally isolated from Salmonella enterica serovar Typhimurium. We previously demonstrated that AgsA was an effective chaperone that could reduce the amount of heat-aggregated proteins in an Escherichia coli rpoH mutant. AgsA appeared to promote survival at lethal temperatures by cooperating with other chaperones in vivo. To investigate the aggregation prevention mechanisms of AgsA, we constructed N- or C-terminal truncated mutants and compared their properties with wild type AgsA.
AgsA showed significant overall homology to wheat sHsp16.9 allowing its three-dimensional structure to be predicted. Truncations of AgsA until the N-terminal 23rd and C-terminal 11th amino acid (AA) from both termini preserved its in vivo chaperone activity. Temperature-controlled gel filtration chromatography showed that purified AgsA could maintain large oligomeric complexes up to 50°C. Destabilization of oligomeric complexes was observed for N-terminal 11- and 17-AA truncated AgsA; C-terminal 11-AA truncated AgsA could not form large oligomeric complexes. AgsA prevented the aggregation of denatured lysozyme, malate dehydrogenase (MDH) and citrate synthase (CS) but did not prevent the aggregation of insulin at 25°C. N-terminal 17-AA truncated AgsA showed no chaperone activity towards MDH. C-terminal 11-AA truncated AgsA showed weak or no chaperone activity towards lysozyme, MDH and CS although it prevented the aggregation of insulin at 25°C. When the same amount of AgsA and C-terminal 11-AA truncated AgsA were mixed (half of respective amount required for efficient chaperone activities), good chaperone activity for all substrates and temperatures was observed. Detectable intermolecular exchanges between AgsA oligomers at 25°C were not observed using fluorescence resonance energy transfer analysis; however, significant exchanges between AgsA oligomers and C-terminal truncated AgsA were observed at 25°C.
Our data demonstrate that AgsA has several regions necessary for efficient chaperone activity: region(s) important for lysozyme chaperone activity are located outer surface of the oligomeric complex while those region(s) important for insulin are located inside the oligomeric complex and those for MDH are located within the N-terminal arm. In addition, the equilibrium between the oligomer and the dimer structures appears to be important for its efficient chaperone activity.
PMCID: PMC2920228  PMID: 20653971
25.  Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function 
BMC Biochemistry  2010;11:26.
SIN3 is a transcriptional repressor protein known to regulate many genes, including a number of those that encode mitochondrial components.
By monitoring RNA levels, we find that loss of SIN3 in Drosophila cultured cells results in up-regulation of not only nuclear encoded mitochondrial genes, but also those encoded by the mitochondrial genome. The up-regulation of gene expression is accompanied by a perturbation in ATP levels in SIN3-deficient cells, suggesting that the changes in mitochondrial gene expression result in altered mitochondrial activity. In support of the hypothesis that SIN3 is necessary for normal mitochondrial function, yeast sin3 null mutants exhibit very poor growth on non-fermentable carbon sources and show lower levels of ATP and reduced respiration rates.
The findings that both yeast and Drosophila SIN3 affect mitochondrial activity suggest an evolutionarily conserved role for SIN3 in the control of cellular energy production.
PMCID: PMC2909972  PMID: 20618965

Results 1-25 (50)