PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity 
BMC Biochemistry  2012;13:30.
Background
The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα) has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity.
Results
We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activity, have altered levels of Serine 608 phosphorylation compared to wild type PI3Kα, and whether differential phosphorylation of Serine 608 contributes to increased activity of oncogenic forms of PI3Kα with point mutations in the helical or the kinase domains. Despite markedly increased lipid kinase activity, protein kinase activity was not altered in oncogenic compared to wild type forms of PI3Kα. By manipulating levels of phosphorylation of Serine 608 in vitro, we found no evidence that the protein kinase activity of PI3Kα affects its phosphoinositide lipid kinase activity in either wild-type or oncogenic mutants of PI3Kα.
Conclusions
Phosphorylation of p85α S608 is not a significant regulator of wild-type or oncogenic PI3Kα lipid kinase activity.
doi:10.1186/1471-2091-13-30
PMCID: PMC3546864  PMID: 23270540
PI3K; PIK3CA; Phosphoinositide; Kinase; Mutation; Oncogene; Phosphorylation
2.  Cluster analysis application identifies muscle characteristics of importance for beef tenderness 
BMC Biochemistry  2012;13:29.
Background
An important controversy in the relationship between beef tenderness and muscle characteristics including biochemical traits exists among meat researchers. The aim of this study is to explain variability in meat tenderness using muscle characteristics and biochemical traits available in the Integrated and Functional Biology of Beef (BIF-Beef) database. The BIF-Beef data warehouse contains characteristic measurements from animal, muscle, carcass, and meat quality derived from numerous experiments. We created three classes for tenderness (high, medium, and low) based on trained taste panel tenderness scores of all meat samples consumed (4,366 observations from 40 different experiments). For each tenderness class, the corresponding means for the mechanical characteristics, muscle fibre type, collagen content, and biochemical traits which may influence tenderness of the muscles were calculated.
Results
Our results indicated that lower shear force values were associated with more tender meat. In addition, muscles in the highest tenderness cluster had the lowest total and insoluble collagen contents, the highest mitochondrial enzyme activity (isocitrate dehydrogenase), the highest proportion of slow oxidative muscle fibres, the lowest proportion of fast-glycolytic muscle fibres, and the lowest average muscle fibre cross-sectional area. Results were confirmed by correlation analyses, and differences between muscle types in terms of biochemical characteristics and tenderness score were evidenced by Principal Component Analysis (PCA). When the cluster analysis was repeated using only muscle samples from m. Longissimus thoracis (LT), the results were similar; only contrasting previous results by maintaining a relatively constant fibre-type composition between all three tenderness classes.
Conclusion
Our results show that increased meat tenderness is related to lower shear forces, lower insoluble collagen and total collagen content, lower cross-sectional area of fibres, and an overall fibre type composition displaying more oxidative fibres than glycolytic fibres.
doi:10.1186/1471-2091-13-29
PMCID: PMC3544649  PMID: 23259756
Tenderness; Beef; Meta-analysis; Muscle biochemistry
3.  Presenilin-1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells 
BMC Biochemistry  2012;13:28.
Background
Presenilin-1 (PS1) is a transmembrane protein first discovered because of its association with familial Alzheimer’s disease. Mice with null mutations in PS1 die shortly after birth exhibiting multiple CNS and non-CNS abnormalities. One of the most prominent features in the brains of PS1−/− embryos is a vascular dysgenesis that leads to multiple intracerebral hemorrhages. The molecular and cellular basis for the vascular dysgenesis in PS1−/− mice remains incompletely understood. Because the extracellular matrix plays key roles in vascular development we hypothesized that an abnormal extracellular matrix might be present in endothelial cells lacking PS1 and examined whether the lack of PS1 affects expression of fibronectin a component of the extracellular matrix known to be essential for vascular development.
Results
We report that primary as well as continuously passaged PS1−/− endothelial cells contain more fibronectin than wild type cells and that the excess fibronectin in PS1−/− endothelial cells is incorporated into a fibrillar network. Supporting the in vivo relevance of this observation fibronectin expression was increased in microvascular preparations isolated from E14.5 to E18.5 PS1−/− embryonic brain. Reintroduction of PS1 into PS1−/− endothelial cells led to a progressive decrease in fibronectin levels showing that the increased fibronectin in PS1−/− endothelial cells was due to loss of PS1. Increases in fibronectin protein in PS1−/− endothelial cells could not be explained by increased levels of fibronectin RNA nor based on metabolic labeling studies by increased protein synthesis. Rather we show based on the rate of turnover of exogenously added biotinylated fibronectin that increased fibronectin in PS1−/− endothelial cells results from a slower degradation of the fibronectin fibrillar matrix on the cell surface.
Conclusions
These studies show that PS1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells. These studies provide molecular clues that may help to explain the origin of the vascular dysgenesis that develops in PS1−/− embryonic mice.
doi:10.1186/1471-2091-13-28
PMCID: PMC3556133  PMID: 23259730
Endothelial cells; Extracellular matrix; Fibronectin; Presenilin-1; Vascular development
4.  In vitro substrate phosphorylation by Ca2+/calmodulin-dependent protein kinase kinase using guanosine-5′-triphosphate as a phosphate donor 
BMC Biochemistry  2012;13:27.
Background
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates particular downstream protein kinases — including CaMKI, CaMKIV, and AMPK— to stimulate multiple Ca2+-signal transduction pathways. To identify previously unidentified CaMKK substrates, we used various nucleotides as phosphate donors to develop and characterize an in vitro phosphorylation assay for CaMKK.
Results
Here, we found that the recombinant CaMKK isoforms were capable of utilizing Mg-GTP as a phosphate donor to phosphorylate the Thr residue in the activation-loop of CaMKIα (Thr177) and of AMPK (Thr172) in vitro. Kinetic analysis indicated that the Km values of CaMKK isoforms for GTP (400-500 μM) were significantly higher than those for ATP (~15 μM), and a 2- to 4-fold decrease in Vmax was observed with GTP. We also confirmed that an ATP competitive CaMKK inhibitor, STO-609, also competes with GTP to inhibit the activities of CaMKK isoforms. In addition, to detect enhanced CaMKI phosphorylation in brain extracts with Mg-GTP and recombinant CaMKKs, we found potential CaMKK substrates of ~45 kDa and ~35 kDa whose Ca2+/CaM-induced phosphorylation was inhibited by STO-609.
Conclusions
These results indicated that screens that use STO-609 as a CaMKK inhibitor and Mg-GTP as a CaMKK-dependent phosphate donor might be useful to identify previously unidentified downstream target substrates of CaMKK.
doi:10.1186/1471-2091-13-27
PMCID: PMC3537517  PMID: 23216827
Calmodulin; CaMKK; Phosphate donor; GTP; Phosphorylation
5.  Arg188 in rice sucrose transporter OsSUT1 is crucial for substrate transport 
BMC Biochemistry  2012;13:26.
Background
Plant sucrose uptake transporters (SUTs) are H+/sucrose symporters related to the major facilitator superfamily (MFS). SUTs are essential for plant growth but little is known about their transport mechanism. Recent work identified several conserved, charged amino acids within transmembrane spans (TMS) in SUTs that are essential for transport activity. Here we further evaluated the role of one of these positions, R188 in the fourth TMS of OsSUT1, a type II SUT.
Results
The OsSUT1(R188K) mutant, studied by expression in plants, yeast, and Xenopus oocytes, did not transport sucrose but showed a H+ leak that was blocked by sucrose. The H+ leak was also blocked by β-phenyl glucoside which is not translocated by OsSUT1. Replacing the corresponding Arg in type I and type III SUTs, AtSUC1(R163K) and LjSUT4(R169K), respectively, also resulted in loss of sucrose transport activity. Fluorination at the glucosyl 3 and 4 positions of α-phenyl glucoside greatly decreased transport by wild type OsSUT1 but did not affect the ability to block H+ leak in the R188K mutant.
Conclusion
OsSUT1 R188 appears to be essential for sucrose translocation but not for substrate interaction that blocks H+ leak. Therefore, we propose that an additional binding site functions in the initial recognition of substrates. The corresponding Arg in type I and III SUTs are equally important. We propose that R188 interacts with glucosyl 3-OH and 4-OH during translocation.
doi:10.1186/1471-2091-13-26
PMCID: PMC3523064  PMID: 23170937
Sucrose transporter; Major facilitator superfamily; Substrate binding; Mutagenesis
6.  Proteomic analysis on N, N′-dinitrosopiperazine-mediated metastasis of nasopharyngeal carcinoma 6-10B cells 
BMC Biochemistry  2012;13:25.
Background
Nasopharyngeal carcinoma (NPC) has a high metastatic feature. N,N′-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its mechanism is not clear. The aim of this study is to reveal the pathogenesis of DNP-involved metastasis. 6-10B cells with low metastasis are from NPC cell line SUNE-1, were used to investigate the mechanism of DNP-mediated NPC metastasis.
Results
6-10B cells were grown in DMEM containing 2H4-L-lysine and 13C 6 15 N4-L-arginine or conventional L-lysine and L-arginine, and identified the incorporation of amino acid by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Labeled 6-10B cells were treated with DNP at 0 -18 μM to establish the non-cytotoxic concentration (NCC) range. NCC was 0 -10 μM. Following treatment with DNP at this range, the motility and invasion of cells were detected in vitro, and DNP-mediated metastasis was confirmed in the nude mice. DNP increased 6-10B cell metastasis in vitro and vivo. DNP-induced protein expression was investigated using a quantitative proteomic. The SILAC-based approach quantified 2698 proteins, 371 of which showed significant change after DNP treatment (172 up-regulated and 199 down-regulated proteins). DNP induced the change in abundance of mitochondrial proteins, mediated the status of oxidative stress and the imbalance of redox state, increased cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression. DNP also increased the expression of secretory AKR1B10, cathepsin B and clusterin 6-10B cells. Gene Ontology and Ingenuity Pathway analysis showed that DNP may regulate protein synthesis, cellular movement, lipid metabolism, molecular transport, cellular growth and proliferation signaling pathways.
Conclusion
DNP may regulate cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression, increase NPC cells motility and invasion, is involved NPC metastasis.
doi:10.1186/1471-2091-13-25
PMCID: PMC3570300  PMID: 23157228
Dinitrosopiperazine; Carcinogen; Nasopharyngeal carcinoma; Metastasis; Quantitative proteomics
7.  A standard numbering scheme for thiamine diphosphate-dependent decarboxylases 
BMC Biochemistry  2012;13:24.
Background
Standard numbering schemes for families of homologous proteins allow for the unambiguous identification of functionally and structurally relevant residues, to communicate results on mutations, and to systematically analyse sequence-function relationships in protein families. Standard numbering schemes have been successfully implemented for several protein families, including lactamases and antibodies, whereas a numbering scheme for the structural family of thiamine-diphosphate (ThDP) -dependent decarboxylases, a large subfamily of the class of ThDP-dependent enzymes encompassing pyruvate-, benzoylformate-, 2-oxo acid-, indolpyruvate- and phenylpyruvate decarboxylases, benzaldehyde lyase, acetohydroxyacid synthases and 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD) is still missing.
Despite a high structural similarity between the members of the ThDP-dependent decarboxylases, their sequences are diverse and make a pairwise sequence comparison of protein family members difficult.
Results
We developed and validated a standard numbering scheme for the family of ThDP-dependent decarboxylases. A profile hidden Markov model (HMM) was created using a set of representative sequences from the family of ThDP-dependent decarboxylases. The pyruvate decarboxylase from S. cerevisiae (PDB: 2VK8) was chosen as a reference because it is a well characterized enzyme. The crystal structure with the PDB identifier 2VK8 encompasses the structure of the ScPDC mutant E477Q, the cofactors ThDP and Mg2+ as well as the substrate analogue (2S)-2-hydroxypropanoic acid. The absolute numbering of this reference sequence was transferred to all members of the ThDP-dependent decarboxylase protein family. Subsequently, the numbering scheme was integrated into the already established Thiamine-diphosphate dependent Enzyme Engineering Database (TEED) and was used to systematically analyze functionally and structurally relevant positions in the superfamily of ThDP-dependent decarboxylases.
Conclusions
The numbering scheme serves as a tool for the reliable sequence alignment of ThDP-dependent decarboxylases and the unambiguous identification and communication of corresponding positions. Thus, it is the basis for the systematic and automated analysis of sequence-encoded properties such as structural and functional relevance of amino acid positions, because the analysis of conserved positions, the identification of correlated mutations and the determination of subfamily specific amino acid distributions depend on reliable multisequence alignments and the unambiguous identification of the alignment columns. The method is reliable and robust and can easily be adapted to further protein families.
doi:10.1186/1471-2091-13-24
PMCID: PMC3534367  PMID: 23157214
8.  Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism 
BMC Biochemistry  2012;13:23.
Background
Carnitine Palmitoyltransferase-1c (CPT1c) is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive.
Results
In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT) and CPT1c knockout (KO) mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism.
Conclusions
Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.
doi:10.1186/1471-2091-13-23
PMCID: PMC3523003  PMID: 23098614
9.  Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins 
BMC Biochemistry  2012;13:21.
Background
Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative.
Results
We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity.
Conclusion
Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation.
doi:10.1186/1471-2091-13-21
PMCID: PMC3514235  PMID: 23088625
Methionine; Methionine sulfoxide; Cysteine; Methionine sulfoxide reductase; Protein oxidation and reduction; Protein repair; Antibodies
10.  Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783 
BMC Biochemistry  2012;13:22.
Background
Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3) has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown.
Results
We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site.
Conclusions
Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.
doi:10.1186/1471-2091-13-22
PMCID: PMC3558359  PMID: 23092334
PRL-3; tyrosine phosphatase; integrin β1; dephosphorylation
11.  Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1 
BMC Biochemistry  2012;13:20.
Background
STAT1 is an essential transcription factor for interferon-γ-mediated gene responses. A distinct sumoylation consensus site (ψKxE) 702IKTE705 is localized in the C-terminal region of STAT1, where Lys703 is a target for PIAS-induced SUMO modification. Several studies indicate that sumoylation has an inhibitory role on STAT1-mediated gene expression but the molecular mechanisms are not fully understood.
Results
Here, we have performed a structural and functional analysis of sumoylation in STAT1. We show that deconjugation of SUMO by SENP1 enhances the transcriptional activity of STAT1, confirming a negative regulatory effect of sumoylation on STAT1 activity. Inspection of molecular model indicated that consensus site is well exposed to SUMO-conjugation in STAT1 homodimer and that the conjugated SUMO moiety is directed towards DNA, thus able to form a sterical hindrance affecting promoter binding of dimeric STAT1. In addition, oligoprecipitation experiments indicated that sumoylation deficient STAT1 E705Q mutant has higher DNA-binding activity on STAT1 responsive gene promoters than wild-type STAT1. Furthermore, sumoylation deficient STAT1 E705Q mutant displayed enhanced histone H4 acetylation on interferon-γ-responsive promoter compared to wild-type STAT1.
Conclusions
Our results suggest that sumoylation participates in regulation of STAT1 responses by modulating DNA-binding properties of STAT1.
doi:10.1186/1471-2091-13-20
PMCID: PMC3532225  PMID: 23043228
Signal transduction; Transcription factors; Sumoylation; Signal transducers and activators of transcription (STATs); Interferon
12.  Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases 
BMC Biochemistry  2012;13:19.
Backgrounds
Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate.
Results
In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses.
Conclusion
We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general.
doi:10.1186/1471-2091-13-19
PMCID: PMC3483245  PMID: 23031230
Sialidase; Neuraminidase; Chromogenic sialic acids; Kinetic assay; Streptococcus pneumoniae
13.  The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits 
BMC Biochemistry  2012;13:18.
Background
Mutations to the TSC1 and TSC2 genes cause the disease tuberous sclerosis complex. The TSC1 and TSC2 gene products form a protein complex that integrates multiple metabolic signals to regulate the activity of the target of rapamycin (TOR) complex 1 (TORC1) and thereby control cell growth. Here we investigate the quaternary structure of the TSC1-TSC2 complex by gel filtration and coimmunoprecipitation.
Results
TSC1 and TSC2 co-eluted in high molecular weight fractions by gel filtration. Coimmunoprecipitation of distinct tagged TSC1 and TSC2 isoforms demonstrated that TSC1-TSC2 complexes contain multiple TSC1 and TSC2 subunits.
Conclusions
TSC1 and TSC2 interact to form large complexes containing multiple TSC1 and TSC2 subunits.
doi:10.1186/1471-2091-13-18
PMCID: PMC3517901  PMID: 23006675
TSC1; TSC2; TSC1-TSC2 complex; Quaternary structure
14.  The role of molecular chaperonins in warm ischemia and reperfusion injury in the steatotic liver: A proteomic study 
BMC Biochemistry  2012;13:17.
Background
The molecular basis of the increased susceptibility of steatotic livers to warm ischemia/reperfusion (I/R) injury during transplantation remains undefined. Animal model for warm I/R injury was induced in obese Zucker rats. Lean Zucker rats provided controls. Two dimensional differential gel electrophoresis was performed with liver protein extracts. Protein features with significant abundance ratios (p < 0.01) between the two cohorts were selected and analyzed with HPLC/MS. Proteins were identified by Uniprot database. Interactive protein networks were generated using Ingenuity Pathway Analysis and GRANITE software.
Results
The relative abundance of 105 proteins was observed in warm I/R injury. Functional grouping revealed four categories of importance: molecular chaperones/endoplasmic reticulum (ER) stress, oxidative stress, metabolism, and cell structure. Hypoxia up-regulated 1, calcium binding protein 1, calreticulin, heat shock protein (HSP) 60, HSP-90, and protein disulfide isomerase 3 were chaperonins significantly (p < 0.01) down-regulated and only one chaperonin, HSP-1was significantly upregulated in steatotic liver following I/R.
Conclusion
Down-regulation of the chaperones identified in this analysis may contribute to the increased ER stress and, consequently, apoptosis and necrosis. This study provides an initial platform for future investigation of the role of chaperones and therapeutic targets for increasing the viability of steatotic liver allografts.
doi:10.1186/1471-2091-13-17
PMCID: PMC3445822  PMID: 22962947
Ischemia repurfusion injury; Two dimensional gel electrophoresis; Mass spectrometry; Liver transplantation; Chaperonins; Endoplasmic reticulum (ER) stress
15.  Structural analysis of Brucella abortus RicA substitutions that do not impair interaction with human Rab2 GTPase 
BMC Biochemistry  2012;13:16.
Background
Protein-protein interactions are at the basis of many cellular processes, and they are also involved in the interaction between pathogens and their host(s). Many intracellular pathogenic bacteria translocate proteins called effectors into the cytoplasm of the infected host cell, and these effectors can interact with one or several host protein(s). An effector named RicA was recently reported in Brucella abortus to specifically interact with human Rab2 and to affect intracellular trafficking of this pathogen.
Results
In order to identify regions of the RicA protein involved in the interaction with Rab2, RicA was subjected to extensive random mutagenesis using error prone polymerase chain reaction. The resulting allele library was selected by the yeast two-hybrid assay for Rab2-interacting clones that were isolated and sequenced, following the “absence of interference” approach. A tridimensional model of RicA structure was used to position the substitutions that did not affect RicA-Rab2 interaction, giving a “negative image” of the putative interaction region. Since RicA is a bacterial conserved protein, RicA homologs were also tested against Rab2 in a yeast two-hybrid assay, and the C. crescentus homolog of RicA was found to interact with human Rab2. Analysis of the RicA structural model suggested that regions involved in the folding of the “beta helix” or an exposed loop with the IGFP sequence could also be involved in the interaction with Rab2. Extensive mutagenesis of the IGFP loop suggested that loss of interaction with Rab2 was correlated with insolubility of the mutated RicA, showing that “absence of interference” approach also generates surfaces that could be necessary for folding.
Conclusion
Extensive analysis of substitutions in RicA unveiled two structural elements on the surface of RicA, the most exposed β-sheet and the IGFP loop, which could be involved in the interaction with Rab2 and protein folding. Our analysis of mutants in the IGFP loop suggests that, at least for some mono-domain proteins such as RicA, protein interaction analysis using allele libraries could be complicated by the dual effect of many substitutions affecting both folding and protein-protein interaction.
doi:10.1186/1471-2091-13-16
PMCID: PMC3527289  PMID: 22892012
Protein-protein interaction; Yeast two-hybrid; Mutagenesis; Brucella
16.  The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase 
BMC Biochemistry  2012;13:15.
Background
It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP) as a molecular probe with site directed mutagenesis (SDM) of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings.
Results
We have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK) and adenylate kinase 1 (AK1), are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP.
Conclusions
The data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It is therefore conceivable that kinase enzymes achieve the observed 2,500-fold variation in KM through a combination of the various conserved “push” and “pull” mechanisms associated with the release of C8-H, the proton transfer cascades unique to the class of kinase in question and the resultant/concomitant creation of a pentavalent species from the γ-phosphate group of ATP. Also demonstrated is the interplay between the role of the C8-H of ATP and the ATP concentration in the observed enzyme activity. The lability of the C8-H mediated by active site residues co-ordinated to the purine ring of ATP therefore plays a significant role in explaining the broad KM range associated with kinase steady state enzyme activities.
doi:10.1186/1471-2091-13-15
PMCID: PMC3537612  PMID: 22876783
17.  Insertion of a myc-tag within α-dystroglycan domains improves its biochemical and microscopic detection 
BMC Biochemistry  2012;13:14.
Background
Epitope tags and fluorescent fusion proteins have become indispensable molecular tools for studies in the fields of biochemistry and cell biology. The knowledge collected on the subdomain organization of the two subunits of the adhesion complex dystroglycan (DG) enabled us to insert the 10 amino acids myc-tag at different locations along the α-subunit, in order to better visualize and investigate the DG complex in eukaryotic cells.
Results
We have generated two forms of DG polypeptides via the insertion of the myc-tag 1) within a flexible loop (between a.a. 170 and 171) that separates two autonomous subdomains, and 2) within the C-terminal domain in position 500. Their analysis showed that double-tagging (the β-subunit is linked to GFP) does not significantly interfere with the correct processing of the DG precursor (pre-DG) and confirmed that the α-DG N-terminal domain is processed in the cell before α-DG reaches its plasma membrane localization. In addition, myc insertion in position 500, right before the second Ig-like domain of α-DG, proved to be an efficient tool for the detection and pulling-down of glycosylated α-DG molecules targeted at the membrane.
Conclusions
Further characterization of these and other myc-permissive site(s) will represent a valid support for the study of the maturation process of pre-DG and could result in the creation of a new class of intrinsic doubly-fluorescent DG molecules that would allow the monitoring of the two DG subunits, or of pre-DG, in cells without the need of antibodies.
doi:10.1186/1471-2091-13-14
PMCID: PMC3432625  PMID: 22835149
18.  Identification of critical residues of the serotype modifying O-acetyltransferase of Shigella flexneri 
BMC Biochemistry  2012;13:13.
Background
Thirteen serotypes of Shigella flexneri (S. flexneri) have been recognised, all of which are capable of causing bacillary dysentery or shigellosis. With the emergence of the newer S. flexneri serotypes, the development of an effective vaccine has only become more challenging. One of the factors responsible for the generation of serotype diversity is an LPS O-antigen modifying, integral membrane protein known as O-acetyltransferase or Oac. Oac functions by adding an acetyl group to a specific O-antigen sugar, thus changing the antigenic signature of the parent S. flexneri strain. Oac is a membrane protein, consisting of hydrophobic and hydrophilic components. Oac bears homology to several known and predicted acetyltransferases with most homology existing in the N-terminal transmembrane (TM) regions.
Results
In this study, the conserved motifs in the TM regions and in hydrophilic loops of S. flexneri Oac were targeted for mutagenesis with the aim of identifying the amino acid residues essential for the function of Oac. We previously identified three critical arginines–R73, R75 and R76 in the cytoplasmic loop 3 of Oac. Re-establishing that these arginines are critical, in this study we suggest a catalytic role for R73 and a structural role for R75 and R76 in O-acetylation. Serine-glycine motifs (SG 52–53, GS 138–139 and SYG 274–276), phenylalanine-proline motifs (FP 78–79 and FPV 282–84) and a tryptophan-threonine motif (WT141-142) found in TM segments and residues RK 110–111, GR 269–270 and D333 found in hydrophilic loops were also found to be critical to Oac function.
Conclusions
By studying the effect of the mutations on Oac’s function and assembly, an insight into the possible roles played by the chosen amino acids in Oac was gained. The transmembrane serine-glycine motifs and hydrophilic residues (RK 110–111, GR 269–270 and D333) were shown to have an affect on Oac assembly which suggests a structural role for these motifs. The phenylalanine-proline and the tryptophan-threonine motifs affect Oac function which could suggest a catalytic role for these amino acids.
doi:10.1186/1471-2091-13-13
PMCID: PMC3467182  PMID: 22793174
Shigella flexneri; O-acetyltransferase (Oac); Critical amino acids
19.  Quaternary structures of recombinant, cellular, and serum forms of Thymidine Kinase 1 from dogs and humans 
BMC Biochemistry  2012;13:12.
Background
Thymidine kinase 1 (TK1) is a salvage enzyme involved in DNA precursor synthesis, and its expression is proliferation dependent. A serum form of TK1 has been used as a biomarker in human medicine for many years and more recently to monitor canine lymphoma. Canine TK1 has not been cloned and studied. Therefore, dog and human TK1 cDNA were cloned and expressed, and the recombinant enzymes characterized. The serum and cellular forms of canine and human TK1 were studied by size-exclusion chromatography and the level of TK1 protein was determined using polyclonal and monoclonal anti-TK1 antibodies.
Results
Canine TK1 phosphorylated the thymidine (dThd) analog 3'-azido-thymidine (AZT) as efficiently as it did dThd, whereas AZT phosphorylation by human TK1 was less efficient than that of dThd. Dog TK1 was also more thermostable and pH tolerant than the human enzyme. Oligomeric forms were observed with both enzymes in addition to the tetrameric and dimeric forms. Cellular TK1 was predominantly seen in dimeric and tetrameric forms, in the case of both dog TK1 from MDCK cells and human TK1 from CEM cells. Active serum TK1 was found mainly in a high molecular weight form, and treatment with a reducing agent shifted the high molecular weight complex to lower molecular weight forms with reduced total activity. Western blot analysis demonstrated a polypeptide of 26 kDa (dog) and 25 kDa (human) for cellular and serum TK1. There was no direct correlation between serum TK1 activity and protein level. It appears that a substantial fraction of serum TK1 is not enzymatically active.
Conclusions
These results suggest that the serum TK1 protein differs from cellular or recombinant forms, is more active in high molecular weight complexes, and is sensitive to reducing agents. The results presented here provide important information for the future development and use of serum TK1 as a diagnostic biomarker in human and veterinary medicine.
doi:10.1186/1471-2091-13-12
PMCID: PMC3411398  PMID: 22741536
Recombinant Thymidine Kinase 1; Canine; Human; AZT; Serum Thymidine Kinase 1
20.  The intrinsic GTPase activity of the Gtr1 protein from Saccharomyces cerevisiae 
BMC Biochemistry  2012;13:11.
Background
The Gtr1 protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. Particularly, the Switch regions in the GTPase domain of Gtr1 are essential for TORC1 activation and amino acid signaling. Therefore, knowledge about the biochemical activity of Gtr1 is required to understand its mode of action and regulation.
Results
By employing tryptophan fluorescence analysis and radioactive GTPase assays, we demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant.
Conclusions
The extremely low intrinsic GTPase activity of Gtr1 implies requirement for interaction with activating proteins to support its physiological function. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.
doi:10.1186/1471-2091-13-11
PMCID: PMC3477016  PMID: 22726655
Gtr1; GTPase; Intrinsic tryptophan fluorescence; Rag GTPase; Cysteine mutagenesis; Switch region
21.  Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein 
BMC Biochemistry  2012;13:10.
Background
Single-stranded DNA binding proteins (SSB) are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase.
Results
We have cloned and purified SSB from Bacillus anthracis (SSBBA). In the absence of DNA, at concentrations ≤100 μg/ml, SSBBA did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSBBA bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT)70 binding suggested that SSBBA forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure.
Conclusions
Unlike other prokaryotic SSB proteins, SSBBA from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSBBA retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSBBA appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSBBA could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.
doi:10.1186/1471-2091-13-10
PMCID: PMC3464605  PMID: 22698072
Single-stranded DNA binding protein (SSB); DNA replication; Fluorescence anisotropy; ssDNA binding; Protein-DNA complex
22.  Identification and characterization of peptide: N- glycanase from Dictyostelium discoideum 
BMC Biochemistry  2012;13:9.
Background
Peptide: N- glycanase (PNGase) enzyme cleaves oligosaccharides from the misfolded glycoproteins and prepares them for degradation. This enzyme plays a role in the endoplasmic reticulum associated degradation (ERAD) pathway in yeast and mice but its biological importance and role in multicellular development remain largely unknown.
Results
In this study, the PNGase from the cellular slime mold, Dictyostelium discoideum (DdPNGase) was identified based on the presence of a common TG (transglutaminase) core domain and its sequence homology with the known PNGases. The domain architecture and the sequence comparison validated the presence of probable functional domains in DdPNGase. The tertiary structure matched with the mouse PNGase. Here we show that DdPNGase is an essential protein, required for aggregation during multicellular development and a knockout strain of it results in small sized aggregates, all of which did not form fruiting bodies. The in situ hybridization and RT-PCR results show higher level of expression during the aggregate stage. The expression gets restricted to the prestalk region during later developmental stages. DdPNGase is a functional peptide:N-glycanase enzyme possessing deglycosylation activity, but does not possess any significant transamidation activity.
Conclusions
We have identified and characterized a novel PNGase from D. discoideum and confirmed its deglycosylation activity. The results emphasize the importance of PNGase in aggregation during multicellular development of this organism.
doi:10.1186/1471-2091-13-9
PMCID: PMC3502110  PMID: 22682495
23.  Phosphatidylcholine formation by LPCAT1 is regulated by Ca2+ and the redox status of the cell 
BMC Biochemistry  2012;13:8.
Background
Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A2. De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC) from lysoPC and long-chain acyl-CoA.
Results
Activity of LPCAT1 is inhibited by Ca2+, and a Ca2+-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D392 and E403 to alanine rendered an enzyme insensitive to Ca2+, which established that Ca2+ binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents.
Conclusion
Mutant forms of LPCAT1 that are not inhibited by Ca2+ and sulfhydryl-alkylating and –oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca2+ concentration of the cell.
doi:10.1186/1471-2091-13-8
PMCID: PMC3439698  PMID: 22676268
Lands’ cycle; Cysteine oxidation; Calcium binding; Plasma membrane
24.  The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-κB activity by blocking ubiquitination mediated proteasomal degradation of IκBα in human hepatoma cells 
BMC Biochemistry  2012;13:7.
Background
Nuclear factor kappa B (NF-κB) is a key transcription factor that plays a crucial role in host survival during infection by pathogens. Therefore, it has been a priority of many pathogens to manipulate the cellular NF-κB activity in order to create a favorable environment for their survival inside the host.
Results
We observed that heterologous expression of the open reading frame 2 (ORF2) protein in human hepatoma cells led to stabilization of the cellular I kappa B alpha (IκBα) pool, with a concomitant reduction in the nuclear localization of the p65 subunit of NF-κB and inhibition of NF-κB activity. Although basal or TPA induced phosphorylation of IκBα was not altered, its ubiquitination was markedly reduced in ORF2 expressing cells. Further analysis revealed that ORF2 protein could directly associate with the F-box protein, beta transducin repeat containing protein (βTRCP) and ORF2 over expression resulted in reduced association of IκBα with the SKP1 and CUL1 components of the SCFβTRCP complex. Chromatin immunoprecipitation (ChIP) assay of the proximal promoter regions of MHC-I heavy chain and IL-8 genes using p65 antibody and LPS stimulated ORF2 expressing cell extract revealed decreased association of p65 with the above regions, indicating that ORF2 inhibited p65 binding at endogenous promoters.
Conclusions
In this report we suggest a mechanism by which ORF2 protein of HEV may inhibit host cell NF-κB activity during the course of a viral infection.
doi:10.1186/1471-2091-13-7
PMCID: PMC3506457  PMID: 22590978
25.  Alternative splicing produces structural and functional changes in CUGBP2 
BMC Biochemistry  2012;13:6.
Background
CELF/Bruno-like proteins play multiple roles, including the regulation of alternative splicing and translation. These RNA-binding proteins contain two RNA recognition motif (RRM) domains at the N-terminus and another RRM at the C-terminus. CUGBP2 is a member of this family of proteins that possesses several alternatively spliced exons.
Results
The present study investigated the expression of exon 14, which is an alternatively spliced exon and encodes the first half of the third RRM of CUGBP2. The ratio of exon 14 skipping product (R3δ) to its inclusion was reduced in neuronal cells induced from P19 cells and in the brain. Although full length CUGBP2 and the CUGBP2 R3δ isoforms showed a similar effect on the inclusion of the smooth muscle (SM) exon of the ACTN1 gene, these isoforms showed an opposite effect on the skipping of exon 11 in the insulin receptor gene. In addition, examination of structural changes in these isoforms by molecular dynamics simulation and NMR spectrometry suggested that the third RRM of R3δ isoform was flexible and did not form an RRM structure.
Conclusion
Our results suggest that CUGBP2 regulates the splicing of ACTN1 and insulin receptor by different mechanisms. Alternative splicing of CUGBP2 exon 14 contributes to the regulation of the splicing of the insulin receptor. The present findings specifically show how alternative splicing events that result in three-dimensional structural changes in CUGBP2 can lead to changes in its biological activity.
doi:10.1186/1471-2091-13-6
PMCID: PMC3368720  PMID: 22433174

Results 1-25 (30)