PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (448)
 

Clipboard (0)
None
Journals
Year of Publication
more »
1.  Determination of carbohydrate-deficient transferrin in a Han Chinese population 
BMC Biochemistry  2014;15:5.
Background
Carbohydrate-deficient transferrin (CDT) is a widely used alcohol biomarker. Because of the high prevalence of chronic alcohol abuse in many countries, CDT plays an important role in the areas of traffic, clinical, and forensic medicine. However, CDT levels have not been determined in the Han Chinese population. Therefore, we investigated the frequency of genetic transferrin variants and the relationship between CDT levels and alcohol consumption in this population. From this data, we established a CDT cut-off for Han Chinese and evaluated the analytical performance of the CDT capillary zone electrophoresis system.
Results
The prevalence of transferrin variants was 4.14%. The mean CDT level of the reference group was 0.73%. We recommended CDT level >1.5% as cut off standard of alcohol intake to ensuring the specificity was best. The CDT test total precision for 0.5%, 0.7%, and 1.55% was 14.4%, 11.5%, and 7.2%, respectively. The data showed good linearity in the studied range of 0.6% to 8.2%.
Conclusions
These results demonstrate that CDT is a useful marker to detect heavy daily alcohol consumption. We proposed and evaluated the first CDT cut-off for the Han Chinese population, and we showed that the CDT capillary zone electrophoresis system is a reliable analytic method.
doi:10.1186/1471-2091-15-5
PMCID: PMC3945810  PMID: 24571498
CDT; Alcohol biomarker; Capillary electrophoresis; Han Chinese population
2.  Mammalian target of Rapamycin inhibition and mycobacterial survival are uncoupled in murine macrophages 
BMC Biochemistry  2014;15:4.
Background
Autophagy is a cellular response to intracellular pathogens including mycobacteria and is induced by the direct inhibitors of mammalian target of Rapamycin (mTOR), a major negative regulator of autophagy. Autophagy induction by mTOR inhibition (mTOR dependent autophagy), through chemical means or starvation, leads to mycobacterial killing in infected cells. However, previous work by our group has shown that mycobacterial infection of macrophages naturally induces both autophagy and mammalian target of Rapamycin (mTOR) activity (mTOR independent autophagy). In the current work, we further explore the relationship between mTOR activity and mycobacterial killing in macrophages.
Results
While low concentrations of the mTOR inhibitors, Rapamycin, Torin 1, and Torin 2, can effectively reduce or block mTOR activity in response to lipopolysaccharides (LPS) or mycobacteria, higher concentrations (10 uM) are required to observe Mycobacterium smegmatis killing. The growth of M. smegmatis was also inhibited by high concentrations of Rapamycin in LC3B and ATG5 deficient bone marrow derived macrophages, suggesting that non-autophagic mechanisms might contribute to killing at high doses. Since mycobacterial killing could be observed only at fairly high concentrations of the mTOR inhibitors, exceeding doses necessary to inhibit mTOR, we hypothesized that high doses of Rapamycin, the most commonly utilized mTOR inhibitor for inducing autophagic killing, may exert a direct bactericidal effect on the mycobacteria. Although a short-term treatment of mycobacteria with Rapamycin did not substantially affect mycobacterial growth, a long-term exposure to Rapamycin could impact mycobacterial growth in vitro in select species.
Conclusions
This data, coupled with previous work from our laboratory, further indicates that autophagy induction by mTOR inhibition is an artificial means to increase mycobacterial killing and masks more relevant endogenous autophagic biochemistry that needs to be understood.
doi:10.1186/1471-2091-15-4
PMCID: PMC3937017  PMID: 24528777
Autophagy; Mycobacteria; mTOR; Inhibitors; Bacille Calmette-Guérin (BCG); M. tuberculosis
3.  Multiple autophosphorylations significantly enhance the endoribonuclease activity of human inositol requiring enzyme 1α 
BMC Biochemistry  2014;15:3.
Background
Endoplasmic reticulum stress, caused by the presence of misfolded proteins, activates the stress sensor inositol-requiring enzyme 1α (IRE1α). The resulting increase in IRE1α RNase activity causes sequence-specific cleavage of X-box binding protein 1 (XBP1) mRNA, resulting in upregulation of the unfolded protein response and cellular adaptation to stress. The precise mechanism of human IRE1α activation is currently unclear. The role of IRE1α kinase activity is disputed, as results from the generation of various kinase-inactivating mutations in either yeast or human cells are discordant. Kinase activity can also be made redundant by small molecules which bind the ATP binding site. We set out to uncover a role for IRE1α kinase activity using wild-type cytosolic protein constructs.
Results
We show that concentration-dependent oligomerisation is sufficient to cause IRE1α cytosolic domain RNase activity in vitro. We demonstrate a role for the kinase activity by showing that autophosphorylation enhances RNase activity. Inclusion of the IRE1α linker domain in protein constructs allows hyperphosphorylation and further enhancement of RNase activity, highlighting the importance of kinase activity. We show that IRE1α phosphorylation status correlates with an increased propensity to form oligomeric complexes and that forced dimerisation causes great enhancement in RNase activity. In addition we demonstrate that even when IRE1α is forced to dimerise, by a GST-tag, phospho-enhancement of activity is still observed.
Conclusions
Taken together these experiments support the hypothesis that phosphorylation is important in modulating IRE1α RNase activity which is achieved by increasing the propensity of IRE1α to dimerise. This work supports the development of IRE1α kinase inhibitors for use in the treatment of secretory cancers.
doi:10.1186/1471-2091-15-3
PMCID: PMC3928614  PMID: 24524643
Endoplasmic reticulum stress; Enzyme mechanisms; ER stress; Mass spectrometry (MS); Multiple myeloma; Ribonuclease; Unfolded protein response; IRE1; Autophosphorylation
4.  Differential roles of tryptophan residues in conformational stability of Porphyromonas gingivalis HmuY hemophore 
BMC Biochemistry  2014;15:2.
Background
We have previously shown that the P. gingivalis HmuY hemophore-like protein binds heme and scavenges heme from host hemoproteins to further deliver it to the cognate heme receptor HmuR. The aim of this study was to characterize structural features of HmuY variants in the presence and absence of heme with respect to roles of tryptophan residues in conformational stability.
Results
HmuY possesses tryptophan residues at positions 51 and 73, which are conserved in HmuY homologs present in a variety of bacteria, and a tryptophan residue at position 161, which has been found only in HmuY identified in P. gingivalis strains. We expressed and purified the wildtype HmuY and its protein variants with single tryptophan residues replaced by alanine or tyrosine residues. All HmuY variants were subjected to thermal denaturation and fluorescence spectroscopy analyses. Replacement of the most buried W161 only moderately affects protein stability. The most profound effect of the lack of a large hydrophobic side chain in respect to thermal stability is observed for W73. Also replacement of the W51 exposed on the surface results in the greatest loss of protein stability and even the large aromatic side chain of a tyrosine residue has little potential to substitute this tryptophan residue. Heme binding leads to different exposure of the tryptophan residue at position 51 to the surface of the protein. Differences in structural stability of HmuY variants suggest the change of the tertiary structure of the protein upon heme binding.
Conclusions
Here we demonstrate differential roles of tryptophan residues in the protein conformational stability. We also propose different conformations of apo- and holoHmuY caused by tertiary changes which allow heme binding to the protein.
doi:10.1186/1471-2091-15-2
PMCID: PMC3922309  PMID: 24512694
Heme; Hemophore; HmuY; Porphyromonas gingivalis; Protein unfolding
5.  BMC Biochemistry Reviewer Acknowledgement, 2013 
BMC Biochemistry  2014;15:1.
Contributing reviewers
The editors of BMC Biochemistry would like to thank all our reviewers who have contributed their time to the journal in Volume 14 (2013).
doi:10.1186/1471-2091-15-1
PMCID: PMC3898229
6.  Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii 
BMC Biochemistry  2013;14:38.
Background
The regulation of lipid biosynthesis is essential in photosynthetic eukaryotic cells. This regulation occurs during the direct synthesis of fatty acids and triacylglycerols (TAGs), as well as during other controlling processes in the main carbon metabolic pathway.
Results
In this study, the mRNA levels of Chlamydomonas citrate synthase (CrCIS) were found to decrease under nitrogen-limited conditions, which suggests suppressed gene expression. Gene silencing by RNA interference (RNAi) was conducted to determine whether CrCIS suppression affected the carbon flux in TAG biosynthesis. Results showed that the TAG level increased by 169.5%, whereas the CrCIS activities in the corresponding transgenic algae decreased by 16.7% to 37.7%. Moreover, the decrease in CrCIS expression led to the increased expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, overexpression of CrCIS gene decreased the TAG level by 45% but increased CrCIS activity by 209% to 266% in transgenic algae.
Conclusions
The regulation of CrCIS gene can indirectly control the lipid content of algal cells. Our findings propose that increasing oil by suppressing CrCIS expression in microalgae is feasible.
doi:10.1186/1471-2091-14-38
PMCID: PMC3890626  PMID: 24373252
Citrate synthase; Triacylglycerol biosynthesis; RNAi interference; Overexpression; Chlamydomonas reinhardtii; Nitrogen deprivation
7.  Biarsenical ligands bind to endogenous G-protein α-subunits and enable allosteric sensing of nucleotide binding 
BMC Biochemistry  2013;14:37.
Background
Heterotrimeric G-proteins relay extracellular signals to intracellular effector proteins. Multiple methods have been developed to monitor their activity; including labeled nucleotides and biosensors based on genetically engineered G-proteins. Here we describe a method for monitoring unlabeled nucleotide binding to endogenous G-proteins α-subunits in a homogeneous assay based on the interaction of 4′,5′-bis(1,2,3-dithioarsolan-2-yl)-2′,7′-difluorofluorescein (F2FlAsH) with G-protein α-subunits.
Results
The biarsenic fluorescent ligand F2FlAsH binds to various wild-type G-protein α-subunits (αi1, αi2, αi3, αslong, αsshort, αolf, αq, α13) via high affinity As-cysteine interactions. This allosteric label enables real time monitoring of the nucleotide bound states of α-subunits via changes in fluorescence anisotropy and intensity of their F2FlAsH-complexes. We have found that different α-subunits displayed different signal amplitudes when interacting with F2FlAsH, being more sensitive to nucleotide binding to αi, αs, αolf and αq than to α13. Addition of nucleotides to F2FlAsH-labeled α-subunits caused concentration-dependent effects on their fluorescence anisotropy. pEC50 values of studied nucleotides depended on the subtype of the α-subunit and were from 5.7 to 8.2 for GTPγS, from 5.4 to 8.1 for GppNHp and from 4.8 to 8.2 for GDP and lastly up to 5.9 for GMP. While GDP and GMP increased the fluorescence anisotropy of F2FlAsH complexes with αi-subunits, they had the opposite effect on the other αβγM complexes studied.
Conclusions
Biarsenical ligands interact allosterically with endogenous G-protein α-subunits in a nucleotide-sensitive manner, so the presence or absence of guanine nucleotides has an effect on the fluorescence anisotropy, intensity and lifetime of F2FlAsH-G-protein complexes.
doi:10.1186/1471-2091-14-37
PMCID: PMC3878488  PMID: 24344803
G-proteins; Tetracysteine; F2FlAsH; Fluorescence anisotropy; Nucleotide binding
8.  The mononuclear metal center of type-I dihydroorotase from aquifex aeolicus 
BMC Biochemistry  2013;14:36.
Background
Dihydroorotase (DHO) is a zinc metalloenzyme, although the number of active site zinc ions has been controversial. E. coli DHO was initially thought to have a mononuclear metal center, but the subsequent X-ray structure clearly showed two zinc ions, α and β, at the catalytic site. Aquifex aeolicus DHO, is a dodecamer comprised of six DHO and six aspartate transcarbamoylase (ATC) subunits. The isolated DHO monomer, which lacks catalytic activity, has an intact α-site and conserved β-site ligands, but the geometry of the second metal binding site is completely disrupted. However, the putative β-site is restored when the complex with ATC is formed and DHO activity is regained. Nevertheless, the X-ray structure of the complex revealed a single zinc ion at the active site. The structure of DHO from the pathogenic organism, S. aureus showed that it also has a single active site metal ion.
Results
Zinc analysis showed that the enzyme has one zinc/DHO subunit and the addition of excess metal ion did not stimulate catalytic activity, nor alter the kinetic parameters. The metal free apoenzyme was inactive, but the full activity was restored upon the addition of one equivalent of Zn2+ or Co2+. Moreover, deletion of the β-site by replacing the His180 and His232 with alanine had no effect on catalysis in the presence or absence of excess zinc. The 2.2 Å structure of the double mutant confirmed that the β-site was eliminated but that the active site remained otherwise intact.
Conclusions
Thus, kinetically competent A. aeolicus DHO has a mononuclear metal center. In contrast, elimination of the putative second metal binding site in amidohydrolyases with a binuclear metal center, resulted in the abolition of catalytic activity. The number of active site metal ions may be a consideration in the design of inhibitors that selectively target either the mononuclear or binuclear enzymes.
doi:10.1186/1471-2091-14-36
PMCID: PMC3880350  PMID: 24314009
Aspartate transcarbamoylase; Carbamoyl phosphate synthetase; CAD; Dihydrorotase; Metalloenzymes; Pyrimidine biosynthesis; Thermophile; Zinc ligands
9.  AGG/CCT interruptions affect nucleosome formation and positioning of healthy-length CGG/CCG triplet repeats 
BMC Biochemistry  2013;14:33.
Background
Fragile X Syndrome (FXS), the most common inherited form of mental retardation, is caused by expansion of a CGG/CCG repeat tract in the 5′-untranslated region of the fragile X mental retardation (FMR1) gene, which changes the functional organization of the gene from euchromatin to heterochromatin. Interestingly, healthy-length repeat tracts possess AGG/CCT interruptions every 9–10 repeats, and clinical data shows that loss of these interruptions is linked to expansion of the repeat tract to disease-length. Thus, it is important to understand how these interruptions alter the behavior of the repeat tract in the packaged gene.
Results
To investigate how uninterrupted and interrupted CGG/CCG repeat tracts interact with the histone core, we designed experiments using the nucleosome core particle, the most basic unit of chromatin packaging. Using DNA containing 19 CGG/CCG repeats, flanked by either a nucleosome positioning sequence or the FMR1 gene sequence, we determined that the addition of a single AGG/CCT interruption modulates both the ability of the CGG/CCG repeat DNA to incorporate into a nucleosome and the rotational and translational position of the repeat DNA around the histone core when flanked by the nucleosome positioning sequence. The presence of these interruptions also alters the periodicity of the DNA in the nucleosome; interrupted repeat tracts have a greater periodicity than uninterrupted repeats.
Conclusions
This work defines the ability of AGG/CCT interruptions to modulate the behavior of the repeat tract in the packaged gene and contributes to our understanding of the role that AGG/CCT interruptions play in suppressing expansion and maintaining the correct functional organization of the FMR1 gene, highlighting a protective role played by the interruptions in genomic packaging.
doi:10.1186/1471-2091-14-33
PMCID: PMC3870987  PMID: 24261641
Trinucleotide repeats; Nucleosome; DNA positioning; Fragile X Syndrome; DNA periodicity
10.  Characterization of a chemostable serine alkaline protease from Periplaneta americana 
BMC Biochemistry  2013;14:32.
Background
Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects’ gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes.
Results
In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents.
Conclusion
Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource.
doi:10.1186/1471-2091-14-32
PMCID: PMC3831873  PMID: 24229392
Periplaneta americana; Serine alkaline protease; Chemostability; Insect proteases; Industrial catalyst
11.  Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition 
BMC Biochemistry  2013;14:31.
Background
Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli.
Results
HV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold.
Conclusions
Fusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that seen in HCII 1-75–API M358R fusion proteins. HCII 1-75 was a superior fusion partner, in spite of the greater affinity of the HV3 triskaidecapeptide, manifested both in isolated and API-fused form, for thrombin exosite 1. Our results suggest that HCII 1-75 binds thrombin exosite 1 and orients the attached serpin scaffold for more efficient interaction with the active site of thrombin than the HV3 triskaidecapeptide.
doi:10.1186/1471-2091-14-31
PMCID: PMC3830444  PMID: 24215622
Alpha1-proteinase inhibitor; Thrombin; Hirudin; Serpins; Coagulation; Inhibition
12.  Biosynthesis and release of pheromonal bile salts in mature male sea lamprey 
BMC Biochemistry  2013;14:30.
Background
In vertebrates, bile salts are primarily synthesized in the liver and secreted into the intestine where they aid in absorption of dietary fats. Small amounts of bile salts that are not reabsorbed into enterohepatic circulation are excreted with waste. In sexually mature male sea lamprey (Petromyzon marinus L.) a bile salt is released in large amounts across gill epithelia into water where it functions as a pheromone. We postulate that the release of this pheromone is associated with a dramatic increase in its biosynthesis and transport to the gills upon sexual maturation.
Results
We show an 8000-fold increase in transcription of cyp7a1, a three-fold increase in transcription of cyp27a1, and a six-fold increase in transcription of cyp8b1 in the liver of mature male sea lamprey over immature male adults. LC–MS/MS data on tissue-specific distribution and release rates of bile salts from mature males show a high concentration of petromyzonol sulfate (PZS) in the liver and gills of mature males. 3-keto petromyzonol sulfate (3kPZS, known as a male sex pheromone) is the primary compound released from gills, suggesting a conversion of PZS to 3kPZS in the gill epithelium. The PZS to 3kPZS conversion is supported by greater expression of hsd3b7 in gill epithelium. High expression of sult2b1 and sult2a1 in gill epithelia of mature males, and tissue-specific expression of bile salt transporters such as bsep, slc10a1, and slc10a2, suggest additional sulfation and transport of bile salts that are dependent upon maturation state.
Conclusions
This report presents a rare example where specific genes associated with biosynthesis and release of a sexual pheromone are dramatically upregulated upon sexual maturation in a vertebrate. We provide a well characterized example of a complex mechanism of bile salt biosynthesis and excretion that has likely evolved for an additional function of bile salts as a mating pheromone.
doi:10.1186/1471-2091-14-30
PMCID: PMC3827326  PMID: 24188124
Pheromone; Gill; Bile salt; CYP7A1; 3-keto petromyzonol sulfate; Petromyzon marinus
13.  KCTD20, a relative of BTBD10, is a positive regulator of Akt 
BMC Biochemistry  2013;14:27.
Background
BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells.
Results
A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues.
Conclusions
KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells.
doi:10.1186/1471-2091-14-27
PMCID: PMC3827329  PMID: 24156551
BTBD10; Akt; KCTD20
15.  Optimization and validation of a reversed-phase high performance liquid chromatography method for the measurement of bovine liver methylmalonyl-coenzyme a mutase activity 
BMC Biochemistry  2013;14:25.
Background
Methylmalonyl-CoA mutase (MCM) is an adenosylcobalamin-dependent enzyme that catalyses the interconversion of (2R)-methylmalonyl-CoA to succinyl-CoA. In humans, a deficit in activity of MCM, due to an impairment of intracellular formation of adenosylcobalamin and methylcobalamin results in a wide spectrum of clinical manifestations ranging from moderate to fatal. Consequently, MCM is the subject of abundant literature. However, there is a lack of consensus on the reliable method to monitor its activity. This metabolic pathway is highly solicited in ruminants because it is essential for the utilization of propionate formed during ruminal fermentation. In lactating dairy cows, propionate is the major substrate for glucose formation. In present study, a reversed-phase high performance liquid chromatography (RP-HPLC) was optimized and validated to evaluate MCM activity in bovine liver. The major aim of the study was to describe the conditions to optimize reproducibility of the method and to determine stability of the enzyme and its product during storage and processing of samples.
Results
Specificity of the method was good, as there was no interfering peak from liver extract at the retention times corresponding to methylmalonyl-CoA or succinyl-CoA. Repeatability of the method was improved as compared to previous RP-HPLC published data. Using 66 μg of protein, intra-assay coefficient of variation (CV) of specific activities, ranged from 0.90 to 8.05% and the CV inter-day was 7.40%. Storage and processing conditions (frozen homogenate of fresh tissue vs. fresh homogenate of tissue snapped in liquid nitrogen) did not alter the enzyme activity. The analyte was also stable in liver crude extract for three frozen/thawed cycles when stored at -20°C and thawed to room temperature.
Conclusions
The improved method provides a way for studying the effects of stages of lactation, diet composition, and physiology in cattle on MCM activity over long periods of time, such as a complete lactation period. Interestingly, this sensitive and accurate method could benefit the study of the cobalamin status in experimental studies and clinical cases.
doi:10.1186/1471-2091-14-25
PMCID: PMC3856599  PMID: 24131771
Methylmalonyl-CoA mutase; Liver; Cattle; Dairy cow; Succinyl-CoA; RP-HPLC
16.  Proteomic analysis of differentially expressed proteins in vitamin C-treated AGS cells 
BMC Biochemistry  2013;14:24.
Background
Vitamin C (ascorbic acid) is an essential nutrient of most living tissues that readily acts as a strong reducing agent, which is abundant in fruits and vegetables. Although, it inhibits cell growth in many human cancer cells in vitro, treatment in cancer is still controversial. Hence, the purpose of this study was to investigate the molecular mechanism of the inhibitory effect of vitamin C on AGS cell growth, and protein profiles in AGS cells after exposure to vitamin C treatment, by using proteomic tools.
Results
Vitamin C showed a cytotoxic effect on AGS cells (IC50 300 μg/mL) and, 20 differentially expressed proteins (spot intensities which show ≥2 fold change and statistically significant, p<0.05 between the control and vitamin-C treated group) were successfully identified by assisted laser desorption/ ionization-time of flight/mass spectrometry (MALDI-TOF/MS). Of the 20 proteins, six were up-regulated and fourteen were down-regulated. Specifically, 14-3-3σ, 14-3-3ϵ, 14-3-3δ, tropomyosin alpha-3 chain and tropomyosin alpha-4 chain were down-regulated and peroxiredoxin-4 and thioredoxin domain-containing proteins 5 were up-regulated. The identified proteins are mainly involved in cell mobility, antioxidant and detoxification, signal transduction and protein metabolism. Further, the expressions of 14-3-3 isoforms were verified with immuno-blotting analysis.
Conclusions
Our proteome results suggest that the apoptosis related proteins were involved in promoting and regulating cell death of AGS cells, and might be helpful to understand the molecular mechanism of vitamin C on AGS cell growth inhibition.
doi:10.1186/1471-2091-14-24
PMCID: PMC3848938  PMID: 24067024
Vitamin C; Gastric cancer; AGS cells; Proteome analysis; 14-3-3 isoforms
17.  A highly conserved arginine residue of the chitosanase from Streptomyces sp. N174 is involved both in catalysis and substrate binding 
BMC Biochemistry  2013;14:23.
Background
Streptomyces sp. N174 chitosanase (CsnN174), a member of glycoside hydrolases family 46, is one of the most extensively studied chitosanases. Previous studies allowed identifying several key residues of this inverting enzyme, such as the two catalytic carboxylic amino acids as well as residues that are involved in substrate binding. In spite of the progress in understanding the catalytic mechanism of this chitosanase, the function of some residues highly conserved throughout GH46 family has not been fully elucidated. This study focuses on one of such residues, the arginine 42.
Results
Mutation of Arg42 into any other amino acid resulted in a drastic loss of enzyme activity. Detailed investigations of R42E and R42K chitosanases revealed that the mutant enzymes are not only impaired in their catalytic activity but also in their mode of interaction with the substrate. Mutated enzymes were more sensitive to substrate inhibition and were altered in their pattern of activity against chitosans of various degrees of deacetylation. Our data show that Arg42 plays a dual role in CsnN174 activity.
Conclusions
Arginine 42 is essential to maintain the enzymatic function of chitosanase CsnN174. We suggest that this arginine is influencing the catalytic nucleophile residue and also the substrate binding mode of the enzyme by optimizing the electrostatic interaction between the negatively charged carboxylic residues of the substrate binding cleft and the amino groups of GlcN residues in chitosan.
doi:10.1186/1471-2091-14-23
PMCID: PMC3848431  PMID: 24041306
Chitosanase; Glycoside hydrolase family GH46; Substrate inhibition; Inverting mechanism; Enzyme-substrate interaction; Arginine
18.  Functional redundancy between trans-Golgi network SNARE family members in Arabidopsis thaliana 
BMC Biochemistry  2013;14:22.
Background
Vesicle fusion is an essential process for maintaining the structure and function of the endomembrane system. Fusion is mediated by t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) fusion proteins on the target membrane and v-SNAREs on the vesicle membrane; v-and t-SNAREs interact with each other, driving vesicle fusion with the target membrane. The Arabidopsis thaliana trans-Golgi network resident SNAREs SYP41 and VTI12, along with YKT61/62, have been shown to function in vesicle fusion in vitro, consistent with immunoprecipitation results showing their interaction in Arabidopsis cell extracts. Conflicting published results have indicated that SYP4 family members are either functionally redundant or have distinct and essential functions; the reason for this discrepancy is unclear.
Results
Here we used a proteoliposome fusion assay to demonstrate that SYP42 and SYP43 can substitute for SYP41 in driving lipid mixing, providing support for functional overlap between family members. Previous reports have also suggested that VTI11 and VTI12 SNAREs show partial overlap in function, despite having mostly distinct localizations and binding partners. We show that VTI11 can substitute for VTI12 in in vitro lipid mixing reactions, providing molecular support for the genetic evidence for partial functional redundancy in vivo.
Conclusions
Our data provide biochemical evidence for functional overlap in membrane fusion between members of the SYP4 or VTI1 SNARE groups, supporting previous genetic data suggesting redundancy.
doi:10.1186/1471-2091-14-22
PMCID: PMC3848460  PMID: 24021022
Membrane fusion; SNARE; Trans-Golgi network; Vesicle trafficking
19.  Newly developed TGF-β2 knock down transgenic mouse lines express TGF-β2 differently and its distribution in multiple tissues varies 
BMC Biochemistry  2013;14:21.
Background
Transforming growth factor-betas (TGF-βs), including beta2 (TGF-β2), constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation and tissue remodeling. TGF-β2 is thought to play important roles in multiple developmental processes and neuron survival. However, before we carried out these investigations, a TGF-β2 gene down-regulated transgenic animal model was needed. In the present study, expressional silencing TGF-β2 was achieved by select predesigning interference short hairpin RNAs (shRNAs) targeting mouse TGF-β2 genes.
Results
Four homozygous transgenic offspring were generated by genetic manipulation and the protein expressions of TGF-β2 were detected in different tissues of these mice. The transgenic mice were designated as Founder 66, Founder 16, Founder 53 and Founder 41. The rates of TGF-β2 down-expression in different transgenic mice were evaluated. The present study showed that different TGF-β2 expressions were detected in multiple tissues and protein levels of TGF-β2 decreased at different rates relative to that of wild type mice. The expressions of TGF-β2 proteins in transgenic mice (Founder 66) reduced most by 52%.
Conclusions
The present study generated transgenic mice with TGF-β2 down-regulated, which established mice model for systemic exploring the possible roles of TGF-β2 in vivo in different pathology conditions.
doi:10.1186/1471-2091-14-21
PMCID: PMC3750643  PMID: 23914775
TGF-β2; Knock down; Transgenic mouse; Protein levels; Distributions
20.  TNFa alter cholesterol metabolism in human macrophages via PKC-θ-dependent pathway 
BMC Biochemistry  2013;14:20.
Background
Studies have shown that inflammation promoted atherosclerotic progression; however, it remains unclear whether inflammation promoted atherosclerotic progression properties by altering cholesterol metabolism in human macrophages. In the present study, we evaluated a potential mechanism of inflammation on atherogenic effects. We evaluated the ability of TNFa to affect Reverse cholesterol transport (RCT) and cholesterol uptake and its mechanism(s) of action in human macrophages.
Results
We initially determined the potential effects of TNFa on cholesterol efflux in the human macrophages. We also determined alterations in mRNA and protein levels of ABCA1, ABCG1, LXRa, CD-36, SR-A in human macrophages using quantitative real-time polymerase chain reaction (PCR) and Western immunoblot analyses. The cholesterol efflux rate and protein expression of ABCA1, ABCG1, LXRa, CD-36, SR-A were quantified in human macrophages under PKC-θ inhibition using PKC-θ siRNA. Our results showed that TNFa inhibited the rate of cholesterol efflux and down-regulation the expression levels of ABCA1, ABCG1 and LXRa and up-regulation the expression levels of CD-36, SR-A in human macrophages; PKC-θ inhibition by PKC-θ siRNA attenuated the effect of TNFa on ABCA1, ABCG1, LXRa, SR-A, CD-36 expression.
Conclusions
Our results suggest TNFa alter cholesterol metabolism in human macrophages through the inhibition of Reverse cholesterol transport and enhancing cholesterol uptake via PKC-θ-dependent pathway, implicating a potential mechanism of inflammation on atherogenic effects.
doi:10.1186/1471-2091-14-20
PMCID: PMC3751201  PMID: 23914732
Reverse cholesterol transport; Cholesterol efflux; TNFa
21.  Peroxygenase activity of cytochrome c peroxidase and three apolar distal heme pocket mutants: hydroxylation of 1-methoxynaphthalene 
BMC Biochemistry  2013;14:19.
Background
The cytochrome P450s are monooxygenases that insert oxygen functionalities into a wide variety of organic substrates with high selectivity. There is interest in developing efficient catalysts based on the “peroxide shunt” pathway in the cytochrome P450s, which uses H2O2 in place of O2/NADPH as the oxygenation agent. We report on our initial studies using cytochrome c peroxidase (CcP) as a platform to develop specific “peroxygenation” catalysts.
Results
The peroxygenase activity of CcP was investigated using 1-methoxynaphthalene as substrate. 1-Methoxynaphthalene hydroxylation was monitored using Russig’s blue formation at standard reaction conditions of 0.50 mM 1-methoxynaphthalene, 1.00 mM H2O2, pH 7.0, 25°C. Wild-type CcP catalyzes the hydroxylation of 1-methoxynaphthalene with a turnover number of 0.0044 ± 0.0001 min-1. Three apolar distal heme pocket mutants of CcP were designed to enhance binding of 1-methoxynaphthalene near the heme, constructed, and tested for hydroxylation activity. The highest activity was observed for CcP(triAla), a triple mutant with Arg48, Trp51, and His52 simultaneously mutated to alanine residues. The turnover number of CcP(triAla) is 0.150 ± 0.008 min-1, 34-fold greater than wild-type CcP and comparable to the naphthalene hydroxylation activity of rat liver microsomal cytochrome P450. While wild-type CcP is very stable to oxidative degradation by excess hydrogen peroxide, CcP(triAla) is inactivated within four cycles of the peroxygenase reaction.
Conclusions
Protein engineering of CcP can increase the rate of peroxygenation of apolar substrates but the initial constructs are more susceptible to oxidative degradation than wild-type enzyme. Further developments will require constructs with increased rates and selectivity while maintaining the stability of wild-type CcP toward oxidative degradation by hydrogen peroxide.
doi:10.1186/1471-2091-14-19
PMCID: PMC3733812  PMID: 23895311
Cytochrome c peroxidase; Peroxygenase activity; Heme pocket mutants; 1-methoxynaphthalene
22.  Identification of the lamin A/C phosphoepitope recognized by the antibody P-STM in mitotic HeLa S3 cells 
BMC Biochemistry  2013;14:18.
Background
Lamins A and C, two major structural components of the nuclear lamina that determine nuclear shape and size, are phosphoproteins. Phosphorylation of lamin A/C is cell cycle-dependent and is involved in regulating the assembly–disassembly of lamin filaments during mitosis. We previously reported that P-STM, a phosphoepitope-specific antibody raised against the autophosphorylation site of p21-activated kinase 2, recognizes a number of phosphoproteins, including lamins A and C, in mitotic HeLa cells.
Results
Here, using recombinant proteins and synthetic phosphopeptides containing potential lamin A/C phosphorylation sites in conjunction with in vitro phosphorylation assays, we determined the lamin A/C phosphoepitope(s) recognized by P-STM. We found that phosphorylation of Thr-19 is required for generating the P-STM phosphoepitope in lamin A/C and showed that it could be created in vitro by p34cdc2/cyclin B kinase (CDK1)-catalyzed phosphorylation of lamin A/C immunoprecipitated from unsynchronized HeLa S3 cells. To further explore changes in lamin A/C phosphorylation in living cells, we precisely quantified the phosphorylation levels of Thr-19 and other sites in lamin A/C isolated from HeLa S3 cells at interphase and mitosis using the SILAC method and liquid chromatography-tandem mass spectrometry. The results showed that the levels of phosphorylated Thr-19, Ser-22 and Ser-392 in both lamins A and C, and Ser-636 in lamin A only, increased ~2- to 6-fold in mitotic HeLa S3 cells.
Conclusions
Collectively, our results demonstrate that P-STM is a useful tool for detecting Thr-19-phosphorylated lamin A/C in cells and reveal quantitative changes in the phosphorylation status of major lamin A/C phosphorylation sites during mitosis.
doi:10.1186/1471-2091-14-18
PMCID: PMC3727946  PMID: 23870088
P-STM antibody; Phosphoepitope; Lamin A/C; Mitosis; SILAC
23.  Transcription start sites and epigenetic analysis of the HSD17B10 proximal promoter 
BMC Biochemistry  2013;14:17.
Background
Hydroxysteroid (17beta) dehydrogenase X (HSD10) is a multifunctional protein encoded by the HSD17B10 gene at Xp11.2. In response to stress or hypoxia-ischemia its levels increase rapidly. Expression of this gene is also elevated significantly in colonic mucosa of the inactive ulcerative colitis patients. However, accurate information about its several transcripts is still lacking, and additional evidence for its escape from X-chromosome inactivation remains to be obtained in order to help settle a debate (He XY, Dobkin C, Yang SY: Does the HSD17B10 gene escape from X-inactivation? Eur J Hum Genet 2011, 19: 123-124).
Results
Two major HSD17B10 transcription start sites were identified by primer extension at -37 and -6 as well as a minor start site at -12 nucleotides from the initiation codon ATG. Epigenetic analysis of the 5’-flanking region of the HSD17B10 gene showed that there was little 5-methylcytosine (<3%) in a normal male, and that none of CpG dinucleotides in the CpG island approached 50% methylation in females.
Conclusion
The actual length of first exon of the HSD17B10 gene was found to be about a quarter larger than that originally reported. Its transcripts result from a slippery transcription complex. The hypomethylation of the CpG island provides additional evidence for the variable escape of the HSD17B10 gene from X-chromosome inactivation which could influence the range of severity of HSD10 deficiency, an inherited error in isoleucine metabolism, in heterozygous females.
doi:10.1186/1471-2091-14-17
PMCID: PMC3729668  PMID: 23834306
CpG island; DNA methylation; TATA-less promoter; X-chromosome inactivation; HSD10 deficiency
24.  Experimental detection of proteolytic activity in a signal peptide peptidase of Arabidopsis thaliana 
BMC Biochemistry  2013;14:16.
Background
Signal peptide peptidase (SPP) is a multi-transmembrane aspartic protease involved in intramembrane-regulated proteolysis (RIP). RIP proteases mediate various key life events by releasing bioactive peptides from the plane of the membrane region. We have previously isolated Arabidopsis SPP (AtSPP) and found that this protein is expressed in the ER. An AtSPP-knockout plant was found to be lethal because of abnormal pollen formation; however, there is negligible information describing the physiological function of AtSPP. In this study, we have investigated the proteolytic activity of AtSPP to define the function of SPPs in plants.
Results
We found that an n-dodecyl-ß-maltoside (DDM)-solubilized membrane fraction from Arabidopsis cells digested the myc-Prolactin-PP-Flag peptide, a human SPP substrate, and this activity was inhibited by (Z-LL)2-ketone, an SPP-specific inhibitor. The proteolytic activities from the membrane fractions solubilized by other detergents were not inhibited by (Z-LL)2-ketone. To confirm the proteolytic activity of AtSPP, the protein was expressed as either a GFP fusion protein or solely AtSPP in yeast. SDS-PAGE analysis showed that migration of the fragments that were cleaved by AtSPP were identical in size to the fragments produced by human SPP using the same substrate. These membrane-expressed proteins digested the substrate in a manner similar to that in Arabidopsis cells.
Conclusions
The data from the in vitro cell-free assay indicated that the membrane fraction of both Arabidopsis cells and AtSPP recombinantly expressed in yeast actually possessed proteolytic activity for a human SPP substrate. We concluded that plant SPP possesses proteolytic activity and may be involved in RIP.
doi:10.1186/1471-2091-14-16
PMCID: PMC3710259  PMID: 23829174
Signal peptide peptidase (SPP); Endoplasmic reticulum (ER); Aspartic protease; Regulated intramembrane proteolysis (RIP); Arabidopsis thaliana
25.  Probing the stability of the “naked” mucin-like domain of human α-dystroglycan 
BMC Biochemistry  2013;14:15.
Background
α-Dystroglycan (α-DG) is heavily glycosylated within its central mucin-like domain. The glycosylation shell of α-dystroglycan is known to largely influence its functional properties toward extracellular ligands. The structural features of this α-dystroglycan domain have been poorly studied so far. For the first time, we have attempted a recombinant expression approach in E. coli cells, in order to analyze by biochemical and biophysical techniques this important domain of the α-dystroglycan core protein.
Results
We expressed the recombinant mucin-like domain of human α-dystroglycan in E. coli cells, and purified it as a soluble peptide of 174 aa. A cleavage event, that progressively emerges under repeated cycles of freeze/thaw, occurs at the carboxy side of Arg461, liberating a 151 aa fragment as revealed by mass spectrometry analysis. The mucin-like peptide lacks any particular fold, as confirmed by its hydrodynamic properties and its fluorescence behavior under guanidine hydrochloride denaturation. Dynamic light scattering has been used to demonstrate that this mucin-like peptide is arranged in a conformation that is prone to aggregation at room temperature, with a melting temperature of ~40°C, which indicates a pronounced instability. Such a conclusion has been corroborated by trypsin limited proteolysis, upon which the protein has been fully degraded in less than 60 min.
Conclusions
Our analysis indirectly confirms the idea that the mucin-like domain of α-dystroglycan needs to be extensively glycosylated in order to reach a stable conformation. The absence/reduction of glycosylation by itself may greatly reduce the stability of the dystroglycan complex. Although an altered pattern of α-dystroglycan O-mannosylation, that is not significantly changing its overall glycosylation fraction, represents the primary molecular clue behind currently known dystroglycanopathies, it cannot be ruled out that still unidentified forms of αDG-related dystrophy might originate by a more substantial reduction of α-dystroglycan glycosylation and by its consequent destabilization.
doi:10.1186/1471-2091-14-15
PMCID: PMC3704865  PMID: 23815856
Dystroglycan; Dynamic light scattering; Capillary electrophoresis; Mass spectrometry

Results 1-25 (448)