Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  The DNA relaxation activity and covalent complex accumulation of Mycobacterium tuberculosis topoisomerase I can be assayed in Escherichia coli: application for identification of potential FRET-dye labeling sites 
BMC Biochemistry  2010;11:41.
Mycobacterium tuberculosis topoisomerase I (MtTOP1) and Escherichia coli topoisomerase I have highly homologous transesterification domains, but the two enzymes have distinctly different C-terminal domains. To investigate the structure-function of MtTOP1 and to target its activity for development of new TB therapy, it is desirable to have a rapid genetic assay for its catalytic activity, and potential bactericidal consequence from accumulation of its covalent complex.
We show that plasmid-encoded recombinant MtTOP1 can complement the temperature sensitive topA function of E. coli strain AS17. Moreover, expression of MtTOP1-G116 S enzyme with the TOPRIM mutation that inhibits DNA religation results in SOS induction and loss of viability in E. coli. The absence of cysteine residues in the MtTOP1 enzyme makes it an attractive system for introduction of potentially informative chemical or spectroscopic probes at specific positions via cysteine mutagenesis. Such probes could be useful for development of high throughput screening (HTS) assays. We employed the AS17 complementation system to screen for sites in MtTOP1 that can tolerate cysteine substitution without loss of complementation function. These cysteine substitution mutants were confirmed to have retained the relaxation activity. One such mutant of MtTOP1 was utilized for fluorescence probe incorporation and fluorescence resonance energy transfer measurement with fluorophore-labeled oligonucleotide substrate.
The DNA relaxation and cleavage complex accumulation of M. tuberculosis topoisomerase I can be measured with genetic assays in E. coli, facilitating rapid analysis of its activities, and discovery of new TB therapy targeting this essential enzyme.
PMCID: PMC2958883  PMID: 20920291
2.  Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol 
BMC Biochemistry  2009;10:18.
Mycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins.
A new protocol for expression and purification of recombinant M. tuberculosis DNA topoisomerase I (MtTOP) has been developed to produce enzyme of much higher specific activity than previously characterized recombinant enzyme. MtTOP was found to be less efficient than E. coli DNA topoisomerase I (EcTOP) in removal of remaining negative supercoils from partially relaxed DNA. DNA cleavage by MtTOP was characterized for the first time. Comparison of DNA cleavage site selectivity with EcTOP showed differences in cleavage site preferences, but the preferred sites of both enzymes have a C nucleotide in the -4 position.
Recombinant M. tuberculosis DNA topoisomerase I can be expressed as a soluble protein and purified in high yield from E. coli host with a new protocol. Analysis of DNA cleavage with M. tuberculosis DNA substrate showed that the preferred DNA cleavage sites have a C nucleotide in the -4 position.
PMCID: PMC2702276  PMID: 19519900
3.  The role of the Zn(II) binding domain in the mechanism of E. coli DNA topoisomerase I 
BMC Biochemistry  2002;3:13.
Escherichia coli DNA topoisomerase I binds three Zn(II) with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain). The 67 kDa N-terminal domain (Top67) has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism.
Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain.
We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.
PMCID: PMC115839  PMID: 12052259

Results 1-3 (3)