PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails 
BMC Biochemistry  2011;12:48.
Background
Epigenetic reading domains are involved in the regulation of gene expression and chromatin state by interacting with histones in a post-translational modification specific manner. A detailed knowledge of the target modifications of reading domains, including enhancing and inhibiting secondary modifications, will lead to a better understanding of the biological signaling processes mediated by reading domains.
Results
We describe the application of Celluspots peptide arrays which contain 384 histone peptides carrying 59 post translational modifications in different combinations as an inexpensive, reliable and fast method for initial screening for specific interactions of reading domains with modified histone peptides. To validate the method, we tested the binding specificities of seven known epigenetic reading domains on Celluspots peptide arrays, viz. the HP1ß and MPP8 Chromo domains, JMJD2A and 53BP1 Tudor domains, Dnmt3a PWWP domain, Rag2 PHD domain and BRD2 Bromo domain. In general, the binding results agreed with literature data with respect to the primary specificity of the reading domains, but in almost all cases we obtained additional new information concerning the influence of secondary modifications surrounding the target modification.
Conclusions
We conclude that Celluspots peptide arrays are powerful screening tools for studying the specificity of putative reading domains binding to modified histone peptides.
doi:10.1186/1471-2091-12-48
PMCID: PMC3176149  PMID: 21884582
2.  The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols 
BMC Biochemistry  2011;12:16.
Background
Black tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG), the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean.
Results
We studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance.
Conclusions
Since Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols.
doi:10.1186/1471-2091-12-16
PMCID: PMC3102611  PMID: 21510884
3.  Specificity of DNA triple helix formation analyzed by a FRET assay 
BMC Biochemistry  2002;3:27.
Background
A third DNA strand can bind into the major groove of a homopurine duplex DNA to form a DNA triple helix. Sequence specific triplex formation can be applied for gene targeting, gene silencing and mutagenesis.
Results
We have analyzed triplex formation of two polypurine triplex forming oligodeoxynucleotides (TFOs) using fluorescence resonance energy transfer (FRET). Under our conditions, the TFOs bind to their cognate double strand DNAs with binding constants of 2.6 × 105 and 2.3 × 106 M-1. Our data confirm that the polypurine TFO binds in an antiparallel orientation with respect to the polypurine DNA strand and that triplex formation requires Mg2+ions whereas it is inhibited by K+ions. The rate of formation of triple helices is slow with bimolecular rate constants of 5.6 × 104 and 8.1 × 104 min-1 M-1. Triplex dissociation was not detectable over at least 30 hours. Triplex formation is sequence specific; alteration of a single base pair within the 13 base pairs long TFOs prevents detectable triplex formation.
Conclusion
We have applied a FRET assay to investigate the specificity of DNA triple helix formation. This assay is homogeneous, continuous and specific, because the appearance of the FRET signal is directly correlated to triplex formation. We show that polypurine TFOs bind highly specifically to polypurine stretches in double stranded DNA. This is a prerequisite for biotechnical applications of triple helices to mediate sequence specific recognition of DNA.
doi:10.1186/1471-2091-3-27
PMCID: PMC128820  PMID: 12323077

Results 1-3 (3)