Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase 
BMC Biochemistry  2006;7:12.
Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use in biosensors for detection of these insecticides. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, its stability has to be improved for extensive utilization.
To create a disulfide bond that could increase the stability of the Drosophila melanogaster acetylcholinesterase, we selected seven positions taking into account first the distance between Cβ of two residues, in which newly introduced cysteines will form the new disulfide bond and second the conservation of the residues in the cholinesterase family. Most disulfide bonds tested did not increase and even decreased the stability of the protein. However, one engineered disulfide bridge, I327C/D375C showed significant stability increase toward denaturation by temperature (170 fold at 50°C), urea, organic solvent and provided resistance to protease degradation. The new disulfide bridge links the N-terminal domain (first 356 aa) to the C-terminal domain. The quantities produced by this mutant were the same as in wild-type flies.
Addition of a disulfide bridge may either stabilize or unstabilize proteins. One bond out of the 7 tested provided significant stabilisation.
PMCID: PMC1481510  PMID: 16686937
2.  Determination of thermodynamic parameters of Xerocomus chrysenteron lectin interactions with N-acetylgalactosamine and Thomsen-Friedenreich antigen by isothermal titration calorimetry 
BMC Biochemistry  2005;6:11.
Lectins are carbohydrate-binding proteins which potentially bind to cell surface glycoconjugates. They are found in various organisms including fungi. A lectin from the mushroom Xerocomus chrysenteron (XCL) has been isolated recently. It shows insecticidal activity and has antiproliferative properties.
As the monosaccharide binding specificity is an important determinant of lectin function, we determined the affinity of XCL for the galactose moiety. Isothermal titration calorimetry studies revealed a dissociation constant Kd of 5.2 μM for the XCL:N-acetylgalactosamine interaction at 27degreesC. Higher affinities were observed at lower temperatures and higher osmotic pressures. The dissociation constant was five hundred times higher for the disaccharide beta-D-Gal(1–3)-D-GalNAc, Thomsen-Friedenreich (TF) antigen (Kd of 0.94 μM). By using fetuin and asialofetuin in interaction with the XCL, we revealed its ability to recognize the Thomsen-Friedenreich motif on glycoproteins.
The XCL antiproliferative effect and the TF antigen specificity presented in this work suggest that XCL and ABL may have similar binding mechanisms. The recent structure determination of these two proteins lead us to analyse these interactions in the light of our thermodynamic data. The understanding of this type of interaction may be a useful tool for the regulation of cell proliferation.
PMCID: PMC1166539  PMID: 15929788
3.  Mutation of exposed hydrophobic amino acids to arginine to increase protein stability 
BMC Biochemistry  2004;5:9.
One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface.
In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion.
Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.
PMCID: PMC479692  PMID: 15251041
4.  Improvement of Drosophila acetylcholinesterase stability by elimination of a free cysteine 
BMC Biochemistry  2002;3:21.
Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, it is not sufficiently stable for extensive utilization. It is a homodimer in which both subunits contain 8 cysteine residues. Six are involved in conserved intramolecular disulfide bridges and one is involved in an interchain disulfide bridge. The 8th cysteine is not conserved and is present at position 290 as a free thiol pointing toward the center of the protein.
The free cysteine has been mutated to valine and the resulting protein has been assayed for stability using various denaturing agents: temperature, urea, acetonitrile, freezing, proteases and spontaneous-denaturation at room temperature. It was found that the C290V mutation rendered the protein 1.1 to 2.7 fold more stable depending on the denaturing agent.
It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain.
PMCID: PMC117796  PMID: 12149129

Results 1-4 (4)