PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Similarity of molecular phenotype between known epilepsy gene LGI1 and disease candidate gene LGI2 
BMC Biochemistry  2010;11:39.
Background
The LGI2 (leucine-rich, glioma inactivated 2) gene, a prime candidate for partial epilepsy with pericentral spikes, belongs to a family encoding secreted, beta-propeller domain proteins with EPTP/EAR epilepsy-associated repeats. In another family member, LGI1 (leucine-rich, glioma inactivated 1) mutations are responsible for autosomal dominant lateral temporal epilepsy (ADLTE). Because a few LGI1 disease mutations described in the literature cause secretion failure, we experimentally analyzed the secretion efficiency and subcellular localization of several LGI1 and LGI2 mutant proteins corresponding to observed non-synonymous single nucleotide polymorphisms (nsSNPs) affecting the signal peptide, the leucine-rich repeats and the EAR propeller.
Results
Mapping of disease-causing mutations in the EAR domain region onto a 3D-structure model shows that many of these mutations co-localize at an evolutionary conserved surface region of the propeller. We find that wild-type LGI2 is secreted to the extracellular medium in glycosylated form similarly to LGI1, whereas several mutant proteins tested in this study are secretion-deficient and accumulate in the endoplasmic reticulum. Interestingly, mutations at structurally homologous positions in the EAR domain have the same effect on secretion in LGI1 and LGI2.
Conclusions
This similarity of experimental mislocalization phenotypes for mutations at homologous positions of LGI2 and the established epilepsy gene LGI1 suggests that both genes share a potentially common molecular pathogenesis mechanism that might be the reason for genotypically distinct but phenotypically related forms of epilepsy.
doi:10.1186/1471-2091-11-39
PMCID: PMC2949613  PMID: 20863412
2.  Farnesylation or geranylgeranylation? Efficient assays for testing protein prenylation in vitro and in vivo 
BMC Biochemistry  2006;7:6.
Background
Available in vitro and in vivo methods for verifying protein substrates for posttranslational modifications via farnesylation or geranylgeranylation (for example, autoradiography with 3H-labeled anchor precursors) are time consuming (weeks/months), laborious and suffer from low sensitivity.
Results
We describe a new technique for detecting prenyl anchors in N-terminally glutathione S-transferase (GST)-labeled constructs of target proteins expressed in vitro in rabbit reticulocyte lysate and incubated with 3H-labeled anchor precursors. Alternatively, hemagglutinin (HA)-labeled constructs expressed in vivo (in cell culture) can be used. For registration of the radioactive marker, we propose to use a thin layer chromatography (TLC) analyzer. As a control, the protein yield is tested by Western blotting with anti-GST- (or anti-HA-) antibodies on the same membrane that has been previously used for TLC-scanning. These protocols have been tested with Rap2A, v-Ki-Ras2 and RhoA (variant RhoA63L) including the necessary controls. We show directly that RasD2 is a farnesylation target.
Conclusion
Savings in time for experimentation and the higher sensitivity for detecting 3H-labeled lipid anchors recommend the TLC-scanning method with purified GST- (or HA-) tagged target proteins as the method of choice for analyzing their prenylation capabilities in vitro and in vivo and, possibly, also for studying the myristoyl and palmitoyl posttranslational modifications.
doi:10.1186/1471-2091-7-6
PMCID: PMC1448197  PMID: 16507103

Results 1-2 (2)