PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Expression and localization of estrogenic type 12 17β-hydroxysteroid dehydrogenase in the cynomolgus monkey 
BMC Biochemistry  2007;8:2.
Background
We have recently discovered that human type 12 17β-HSD (h17β-HSD12), a homolog of type 3 17β-HSD, is a new estrogen-specific 17β-hydroxysteroid dehydrogenase involved in the production of estradiol (E2). To further characterize this estradiol-producing enzyme, we have isolated the corresponding cDNA in the cynomolgus monkey (Macaca fascicularis), characterized its enzymatic activities and performed cellular localization using in situ hybridization.
Results
Using HEK-293 cells stably expressing Macaca fascicularis type 12 17β-HSD (mf17β-HSD12), we have found that the mf17β-HSD12 catalyzes efficiently and selectively the transformation of El into E2, in analogy with the h17β-HSD12. We have also quantified the mf17β-HSD12 mRNA expression levels in a series of Macaca fascicularis tissues using Quantitative RealTime PCR. The Macaca fascicularis 17β-HSD12 mRNA is widely expressed with the highest levels tissues found in the cerebellum, spleen and adrenal with moderate level observed in all the other examined, namely the testis, ovary, cerebral cortex, liver, heart, prostate, mammary gland, myometrium, endometrium, skin, muscle and pancreas. To gain knowledge about the cellular localization of the mf17β-HSD12 mRNA expression, we performed in situ hybridization using a 35S-labeled cRNA probe. Strong labeling was observed in epithelial cells and stromal cells of the mammary gland. In the uterus, the labeling is detected in epithelial cells and stromal cells of the endometrium.
Conclusion
These results strongly suggest that the Macaca fascicularis 17β-HSD12 is an essential partner of aromatase in the biosynthesis of estradiol (E2). It strongly suggests that in the estradiol biosynthesis pathway, the step of 17-ketoreduction comes after the step of the aromatization (the aromatization of 4-androstendione to estrone followed by the conversion of estrone into estradiol by estrogen specific l7β-HSDs) which is in contrast with the hypothesis suggesting that 4-androstenedione is converted to testosterone followed by the aromatization of testosterone.
doi:10.1186/1471-2091-8-2
PMCID: PMC1800897  PMID: 17280614
2.  Characterization of 17α-hydroxysteroid dehydrogenase activity (17α-HSD) and its involvement in the biosynthesis of epitestosterone 
BMC Biochemistry  2005;6:12.
Background
Epi-testosterone (epiT) is the 17α-epimer of testosterone. It has been found at similar level as testosterone in human biological fluids. This steroid has thus been used as a natural internal standard for assessing testosterone abuse in sports. EpiT has been also shown to accumulate in mammary cyst fluid and in human prostate. It was found to possess antiandrogenic activity as well as neuroprotective effects. So far, the exact pathway leading to the formation of epiT has not been elucidated.
Results
In this report, we describe the isolation and characterization of the enzyme 17α-hydroxysteroid dehydrogenase. The name is given according to its most potent activity. Using cells stably expressing the enzyme, we show that 17α-HSD catalyzes efficienty the transformation of 4-androstenedione (4-dione), dehydroepiandrosterone (DHEA), 5α-androstane-3,17-dione (5α-dione) and androsterone (ADT) into their corresponding 17α-hydroxy-steroids : epiT, 5-androstene-3β,17α-diol (epi5diol), 5α-androstane-17α-ol-3-one (epiDHT) and 5α-androstane-3α,17α-diol (epi3α-diol), respectively. Similar to other members of the aldo-keto reductase family that possess the ability to reduce the keto-group into hydroxyl-group at different position on the steroid nucleus, 17α-HSD could also catalyze the transformation of DHT, 5α-dione, and 5α-pregnane-3,20-dione (DHP) into 3α-diol, ADT and 5α-pregnane-3α-ol-20-one (allopregnanolone) through its less potent 3α-HSD activity. We also have over-expressed the 17α-HSD in Escherichia coli and have purified it by affinity chromatography. The purified enzyme exhibits the same catalytic properties that have been observed with cultured HEK-293 stably transfected cells. Using quantitative Realtime-PCR to study tissue distribution of this enzyme in the mouse, we observed that it is expressed at very high levels in the kidney.
Conclusion
The present study permits to clarify the biosynthesis pathway of epiT. It also offers the opportunity to study gene regulation and function of this enzyme. Further study in human will allow a better comprehension about the use of epiT in drug abuse testing; it will also help to clarify the importance of its accumulation in breast cyst fluid and prostate, as well as its potential role as natural antiandrogen.
doi:10.1186/1471-2091-6-12
PMCID: PMC1185520  PMID: 16018803

Results 1-2 (2)