PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Short-term fasting induces profound neuronal autophagy 
Autophagy  2010;6(6):702-710.
Disruption of autophagy – a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes – can cause neurodegeneration in tissue culture and in vivo. Up-regulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which up-regulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically-privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate, and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic up-regulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially-therapeutic neuronal response.
PMCID: PMC3106288  PMID: 20534972
Autophagy; fasting; Purkinje cells; cortical neurons; confocal microscopy; electron microscopy; neuroprotection; starvation; CNS; cortex
2.  Short-term fasting induces profound neuronal autophagy 
Autophagy  2010;6(6):702-710.
Disruption of autophagy—a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes—can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response.
doi:10.4161/auto.6.6.12376
PMCID: PMC3106288  PMID: 20534972
autophagy; fasting; Purkinje cells; cortical neurons; confocal microscopy; electron microscopy; neuroprotection; starvation; CNS; cortex
3.  Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis 
Autophagy  2009;5(2):152-158.
Multiple sclerosis (MS) is an inflammatory central nervous system (CNS) disorder characterized by T cell-mediated demyelination. In MS, prolonged T cell survival and increased T cell proliferation have been linked to disease relapse and progression. Recently, the autophagy-related gene 5 (Atg5) has been shown to modulate T cell survival. In this study, we examined the expression of Atg5 using both a mouse model of autoimmune demyelination as well as blood and brain tissues from MS cases. Quantitative real-time PCR analysis of RNA isolated from blood samples of experimental autoimmune encephalomyelitis (EAE) mice revealed a strong correlation between Atg5 expression and clinical disability. Analysis of protein extracted from these cells confirmed both upregulation and post-translational modification of Atg5, the latter of which was positively correlated with EAE severity. Analysis of RNA extracted from T cells isolated by negative selection indicated that Atg5 expression was significantly elevated in individuals with active relapsing-remitting MS compared to non-diseased controls. Brain tissue sections from relapsing-remitting MS cases examined by immunofluorescent histochemistry suggested that encephalitogenic T cells are a source of Atg5 expression in MS brain samples. Together these data suggest that increased T cell expression of Atg5 may contribute to inflammatory demyelination in MS.
PMCID: PMC2779564  PMID: 19066443
Atg5; autophagy; multiple sclerosis; T cell; autoimmune; neuroinflammation; encephalomyelitis; apoptosis; CNS; EAE
4.  Decreased Neuronal Autophagy in HIV Dementia: A Mechanism of Indirect Neurotoxicity 
Autophagy  2008;4(7):963-966.
Many recent studies indicate that dysregulation of autophagy is a common feature of many neurodegenerative diseases. The HIV-1-associated neurological disorder is an acquired cognitive and motor disease that includes a severe neurodegenerative dementia. We find that the neurodegeneration seen in the brain in HIV-1 infection is associated with an inhibition of neuronal autophagy, leading to neuronal demise. Neurons treated with supernatants from SIV-infected microglia develop a decrease in autophagy-inducing proteins, a decrease in neuronal autophagy vesicles, and an increase in sequestosome-1/p62. Examination of brains from HIV-infected individuals and SIV-infected monkeys reveals signs of autophagy dysregulation, associated, respectively, with dementia and encephalitis. Excitotoxic and inflammatory factors could inhibit neuronal autophagy, and stimulation of autophagy with rapamycin prevents such effects. Here we amplify on these findings, and propose that in the setting of HIV-infection, the decreased neuronal autophagy sensitizes cells to pro-apoptotic and other damaging mechanisms, leading to neuronal dysfunction and death. Hence, new therapeutic approaches aimed at boosting neuronal autophagy are conceivable to treat those suffering from the neurological complications of HIV.
PMCID: PMC2665179  PMID: 18772620
autophagy; HIV-1 associated neurocognitive disorder; neuron; neurodegeneration; microglia; dementia; AIDS; SIV; NMDA

Results 1-4 (4)