PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  PNA bearing 5-azidomethyluracil 
Artificial DNA, PNA & XNA  2012;3(2):53-62.
Fmoc- and Boc-protected modified monomers bearing 5-azidomethyluracil nucleobase were synthesized. Four different solid-phase synthetic strategies were tested in order to evaluate the application of this series of monomers for the solid-phase synthesis of modified PNA. The azide was used as masked amine for the introduction of amide-linked functional groups, allowing the production of a library of compounds starting from a single modified monomer. The azide function was also exploited as reactive group for the modification of PNA in solution via azide-alkyne click cycloaddition.
doi:10.4161/adna.20158
PMCID: PMC3429531  PMID: 22772040
modified uracil; peptide nucleic acids; PNA; solid-phase modification; click reaction; orthogonal protection
2.  Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays 
Artificial DNA, PNA & XNA  2012;3(2):63-72.
PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes.
doi:10.4161/adna.20603
PMCID: PMC3429532  PMID: 22772038
PNA; olive oil; hazelnut oil; SNP; cultivar identification; DNA fingerprinting
3.  A pyrenyl-PNA probe for DNA and RNA recognition 
Artificial DNA, PNA & XNA  2010;1(2):83-89.
The design and the synthesis of a PNA oligomer containing a pyrenyl residue in the backbone were performed. PNA sequence was chosen complementary to a “G rich” target sequence involved in G-quadruplex formation. The pyrenyl unit replaced a nucleobase in the middle of the PNA through covalent linkage to the backbone by a carboxymethyl unit. A systematic study on the binding properties of this probe towards DNA and RNA complementary strands was carried out by UV and fluorescence spectroscopy. UV melting curves indicated that the PNA probe binds more tightly to RNA rather than to DNA. Thermodynamic data obtained by Van't Hoff fitting of the melting curves indicated that, in the case of RNA, a more favorable interaction occurs between the pyrenyl unit and the RNA nucleobases, leading to a very favorable enthalpic contribution.
The fluorescence analysis showed specific quenching of the pyrene emission associated to the formation of the full-match PNA-DNA or PNA-RNA duplexes. Again, this behavior was more evident in the case of RNA, consistently with the stronger interaction of the pyrenyl unit with the complementary strand. In order to study the sequence specificity of the pyrenyl-PNA probe (pyr-PNA), recognition experiments on mismatched DNA and RNA sequences were also performed.
doi:10.4161/adna.1.2.13899
PMCID: PMC3116571  PMID: 21686243
peptide nucleic acid; pyrene; DNA; RNA; fluorescence

Results 1-3 (3)