PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs 
Artificial DNA, PNA & XNA  2014;5:e29174.
Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior.
doi:10.4161/adna.29174
PMCID: PMC4122569  PMID: 25483932
Fluorescence; nucleobase; deoxycytidine; Sonogashira cross-coupling; solvent polarity; solvent viscosity
2.  Anomeric DNA quadruplexes 
Artificial DNA, PNA & XNA  2014;5:e28422.
Thrombin-binding aptamer (TBA) is a 15-nt DNA oligomer that efficiently inhibits thrombin. It has been shown that TBA folds into an anti-parallel unimolecular G-quadruplex. Its three-dimensional chair-like structure consists of two G-tetrads connected by TT and TGT loops. TBA undergoes fast degradation by nucleases in vivo. To improve the nuclease resistance of TBA, a number of modified analogs have been proposed. Here, we describe anomeric modifications of TBA. Non-natural α anomers were used to replace selected nucleotides in the loops and core. Significant stabilization of the quadruplex was observed for the anomeric modification of TT loops at T4 and T13. Replacement of the core guanines either prevents quadruplex assembly or induces rearrangement in G-tetrads. It was found that the anticoagulant properties of chimeric aptamers could be retained only with intact TT loops. On the contrary, modification of the TGT loop was shown to substantially increase nuclease resistance of the chimeric aptamer without a notable disturbance of its anticoagulant activity.
doi:10.4161/adna.28422
PMCID: PMC4014524  PMID: 25483931
thombin binding aptamer; anomer; quadruplex; anticoagulant properties; nuclease resistance
3.  Investigation of B-Z transitions with DNA oligonucleotides containing 8-methylguanine 
Artificial DNA, PNA & XNA  2014;5:e28226.
Among various Z-form DNA inducers, such as transition metal complexes, polyamines and high ionic concentrations, 8-methylguanine have received attention as efficient chemical modifications. Although it is clear that m8–modified guanine base markedly stabilizes the Z conformation of short oligonucleotides under physiological salt conditions, how sequence composition affects the preference of Z-DNA is still not well established. In this study, various oligomers of d(CG)n or d(GC)n containing either 8-methylguanine in a different position were synthesized and their capacity of stabilizing Z-DNA were evaluated by CD spectra and then compared with each other. It is was found out that the Z-DNA stabilizing effect depend on the order of arrangement of m8G and m8rG in DNA strands and the center position is the most effective to stabilize the Z-DNA and promote the B to Z transition.
doi:10.4161/adna.28226
PMCID: PMC4014523  PMID: 25483842
8-methylguanine; Z-form DNA; B-Z transition; CD spectra
4.  Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases 
Artificial DNA, PNA & XNA  2014;5:e27792.
Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis.
doi:10.4161/adna.27792
PMCID: PMC4014521  PMID: 25483840
triplex-forming oligonucleotides; 8-aza-7-deaza-guanine
5.  PNA-based microbial pathogen identification and resistance marker detection: an accurate, isothermal rapid assay based on genome-specific features 
Artificial DNA, PNA & XNA  2010;1(2):1-7.
With the rapidly growing availability of the entire genome sequences of microbial pathogens, there is unmet need for increasingly sensitive systems to monitor the gene-specific markers for diagnosis of bacteremia that enables an earlier detection of causative agent and determination of drug resistance. To address these challenges, a novel FISH-type genomic sequence-based molecular technique is proposed that can identify bacteria and simultaneously detect antibiotic resistance markers for rapid and accurate testing of pathogens. The approach is based on a synergistic combination of advanced Peptide Nucleic Acid (PNA)-based technology and signal-enhancing Rolling Circle Amplification (RCA) reaction to achieve a highly specific and sensitive assay. A specific PNA-DNA construct serves as an exceedingly selective and very effective biomarker, while RCA enhances detection sensitivity and provide with a highly multiplexed assay system. Distinct-color fluorescent decorator probes are used to identify about 20-nucleotide-long signature sequences in bacterial genomic DNA and/or key genetic markers of drug resistance in order to identify and characterize various pathogens. The technique's potential and its utility for clinical diagnostics are illustrated by identification of S. aureus with simultaneous discrimination of methicillin-sensitive (MSSA) versus methicillin-resistant (MRSA) strains. Overall these promising results hint to the adoption of PNA-based rapid sensitive detection for diagnosis of other clinically relevant organisms. Thereby, new assay enables significantly earlier administration of appropriate antimicrobial therapy and may, thus have a positive impact on the outcome of the patient.
PMCID: PMC2953854  PMID: 20953307

Results 1-5 (5)