Search tips
Search criteria

Results 1-25 (310)

Clipboard (0)
Year of Publication
1.  Progress in spondylarthritis. Progress in studies of the genetics of ankylosing spondylitis 
The advent of high-throughput SNP genotyping methods has advanced research into the genetics of common complex genetic diseases such as ankylosing spondylitis (AS) rapidly in recent times. The identification of associations with the genes IL23R and ERAP1 have been robustly replicated, and advances have been made in studies of the major histocompatibility complex genetics of AS, and of KIR gene variants and the disease. The findings are already being translated into increased understanding of the immunological pathways involved in AS, and raising novel potential therapies. The current studies in AS remain underpowered, and no full genomewide association study has yet been reported in AS; such studies are likely to add to the significant advances that have already been made.
PMCID: PMC2787301  PMID: 19886979
2.  Value of anti-infective chemoprophylaxis in primary systemic vasculitis: what is the evidence? 
Although infections are a major concern in patients with primary systemic vasculitis, actual knowledge about risk factors and evidence concerning the use of anti-infective prophylaxis from clinical trials are scarce. The use of high dose glucocorticoids and cyclophosphamide pose a definite risk for infections. Bacterial infections are among the most frequent causes of death, with Staphylococcus aureus being the most common isolate. Concerning viral infections, cytomegalovirus and varicella-zoster virus reactivation represent the most frequent complications. The only prophylactic measure that is widely accepted is trimethoprim/sulfamethoxazole to avoid Pneumocystis jiroveci pneumonia in small vessel vasculitis patients with generalised disease receiving therapy for induction of remission.
PMCID: PMC2787252  PMID: 19886977
3.  Why are women predisposed to autoimmune rheumatic diseases? 
The majority of autoimmune diseases predominate in females. In searching for an explanation for this female excess, most attention has focused on hormonal changes - both exogenous changes (for example, oral contraceptive pill) and fluctuations in endogenous hormone levels particularly related to menstruation and pregnancy history. Other reasons include genetic differences, both direct (influence of genes on sex chromosomes) and indirect (such as microchimerism), as well as gender differences in lifestyle factors. These will all be reviewed, focusing on the major autoimmune connective tissue disorders: rheumatoid arthritis, systemic lupus erythematosus and scleroderma.
PMCID: PMC2787267  PMID: 19863777
4.  Developments in the scientific understanding of rheumatoid arthritis 
Rheumatoid arthritis (RA) is recognized to be an autoimmune disease that causes preclinical systemic abnormalities and eventually leads to synovial inflammation and destruction of the joint architecture. Recently identified genetic risk factors and novel insights from animal models of spontaneous arthritis have lent support to the concept that thymic selection of an autoreactive T-cell repertoire is an important risk factor for this disease. With advancing age, defects in the homeostatic control of the T-cell pool and in the setting of signaling thresholds lead to the accumulation of pro-inflammatory T-effector cell populations and loss of tolerance to neo-antigens, such as citrullinated peptides. As the breakdown of tolerance to modified self-antigens can precede synovitis by decades, repair of homeostatic defects may open a unique window of opportunity for preventive interventions in RA. The end result of RA, destruction of cartilage and bone, appears to be driven by cytokine- and cell contact-induced activation of synoviocytes and monocytic cells, some of which differentiate into tissue-destructive osteoclasts. Targeting mediators involved in this process has greatly improved the management of this chronic inflammatory syndrome.
PMCID: PMC2787299  PMID: 19835638
5.  Outcome measures in inflammatory rheumatic diseases 
Inflammatory rheumatic diseases are generally multifaceted disorders and, therefore, measurement of multiple outcomes is relevant to most of these diseases. Developments in outcome measures in the rheumatic diseases are promoted by the development of successful treatments. Outcome measurement will increasingly deal with measurement of low levels of disease activity and avoidance of disease consequences. It is an advantage for patient management and knowledge transfer if the same outcomes are used in practice and in trials. Continuous measures of change are generally the most powerful and, therefore, are preferred as primary outcomes in trials. For daily clinical practice, outcome measures should reflect the patients' state and have to be easily derivable. The objective of this review is to describe recent developments in outcome measures for inflammatory rheumatic diseases for trials and clinical practice, with an emphasis on rheumatoid arthritis.
PMCID: PMC2787283  PMID: 19849821
6.  Lessons from animal models of arthritis over the past decade 
This review summarizes the major developments in animal models of arthritis in the past decade. It focuses on novel transgenic models, addresses the involvement of cytokines and discusses novel findings in cartilage and bone erosion. It is clear that interest has been raised in the direct arthritogenic role of autoantibodies, apart from T cell involvement, and their interaction with cells through Fcgamma receptors. In addition, a role for IL-6 and IL-17 and Th17 cells seems apparent in most T cell-driven arthritis models, with environmental triggering through Toll-like receptors contributing to this process. Further insights into enzymes involved in cartilage proteoglycan loss in arthritis, as well as mediators regulating bone erosion and bone apposition, have been gained.
PMCID: PMC2787282  PMID: 19849822
7.  Genetics of rheumatic disease 
Many of the chronic inflammatory and degenerative disorders that present to clinical rheumatologists have a complex genetic aetiology. Over the past decade a dramatic improvement in technology and methodology has accelerated the pace of gene discovery in complex disorders in an exponential fashion. In this review, we focus on rheumatoid arthritis, systemic lupus erythematosus and ankylosing spondylitis and describe some of the recently described genes that underlie these conditions and the extent to which they overlap. The next decade will witness a full account of the main disease susceptibility genes in these diseases and progress in establishing the molecular basis by which genetic variation contributes to pathogenesis.
PMCID: PMC2787281  PMID: 19849816
8.  Toll-like receptors and NOD-like receptors in rheumatic diseases 
The past 10 years have seen the description of families of receptors that drive proinflammatory cytokine production in infection and tissue injury. Two major classes have been examined in the context of inflammatory joint disease - the Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs such as TLR2 and TLR4 are being implicated in the pathology of rheumatoid arthritis, ankylosing spondylitis, lyme arthritis and osteoarthritis. Nalp3 has been identified as a key NLR for IL-1β production and has been shown to have a particular role in gout. These findings present new therapeutic opportunities, possibly allowing for the replacement of biologics with small molecule inhibitors.
PMCID: PMC2787278  PMID: 19835640
9.  Progress in osteoporosis and fracture prevention: focus on postmenopausal women 
In the past decade, we have witnessed a revolution in osteoporosis diagnosis and therapeutics. This includes enhanced understanding of basic bone biology, recognizing the severe consequences of fractures in terms of morbidity and short-term re-fracture and mortality risk and case finding based on clinical risks, bone mineral density, new imaging approaches, and contributors to secondary osteoporosis. Medical interventions that reduce fracture risk include sufficient calcium and vitamin D together with a wide spectrum of drug therapies (with antiresorptive, anabolic, or mixed effects). Emerging therapeutic options that target molecules of bone metabolism indicate that the next decade should offer even greater promise for further improving our diagnostic and treatment approaches.
PMCID: PMC2787277  PMID: 19849819
10.  Cytokines in chronic rheumatic diseases: is everything lack of homeostatic balance? 
Biological systems have powerful inbuilt mechanisms of control intended to maintain homeostasis. Cytokines are no exception to this rule, and imbalance in cytokine activities may lead to inflammation with subsequent tissue and organ damage, altered function, and death. Balance is achieved through multiple, not mutually exclusive, mechanisms including the simultaneous production of agonist and antagonistic cytokines, expression of soluble receptors or membrane-bound nonsignaling receptors, priming and/or reprogramming of signaling, and uncoupling of ligand/receptor pairing from signal transduction. Insight into cytokine balance is leading to novel therapeutic approaches particularly in autoimmune conditions, which are intimately linked to a dysregulated cytokine production.
PMCID: PMC2787274  PMID: 19849823
11.  Developments in the clinical understanding of lupus 
Advances in genetics and new understanding of the molecular pathways that mediate innate and adaptive immune system activation, along with renewed focus on the role of the complement system as a mediator of inflammation, have stimulated elaboration of a scheme that might explain key mechanisms in the pathogenesis of systemic lupus erythematosus. Clinical observations identifying important comorbidities in patients with lupus have been a recent focus of research linking immune mechanisms with clinical manifestations of disease. While these advances have identified rational and promising targets for therapy, so far the therapeutic trials of new biologic agents have not met their potential. Nonetheless, progress in understanding the underlying immunopathogenesis of lupus and its impact on clinical disease has accelerated the pace of clinical research to improve the outcomes of patients with systemic lupus erythematosus.
PMCID: PMC2787273  PMID: 19849817
12.  Developments in the scientific and clinical understanding of fibromyalgia 
Our understanding of fibromyalgia (FM) has made significant advances over the past decade. The current concept views FM as the result of central nervous system malfunction resulting in amplification of pain transmission and interpretation. Research done over the past years has demonstrated a role for polymorphisms of genes in the serotoninergic, dopaminergic and catecholaminergic systems in the etiopathogenesis of FM. Various external stimuli such as infection, trauma and stress may contribute to the development of the syndrome. The management of FM requires an integrated approach combining pharmacological and nonpharmacological modalities. The recent Food and Drugs Administration approval of pregabalin, duloxetine and milnacipran as medications for FM may herald a new era for the development of medications with higher specificity and efficacy for the condition. As our understanding of the biological basis and the genetic underpinning of FM increases, we hope to gain a better understanding of the true nature of the disorder, to better classify patients and to attain more rational therapeutic modalities.
PMCID: PMC2787255  PMID: 19835639
13.  B cells in autoimmunity 
B-cell development is tightly regulated, including the induction of B-cell memory and antibody-secreting plasmablasts and plasma cells. In the last decade, we have expanded our understanding of effector functions of B cells as well as their roles in human autoimmune diseases. The current review addresses the role of certain stages of B-cell development as well as plasmablasts/plasma cells in immune regulation under normal and autoimmune conditions with particular emphasis on systemic lupus erythematosus. Based on preclinical and clinical data, B cells have emerged increasingly as both effector cells as well as cells with immunoregulatory potential.
PMCID: PMC2787254  PMID: 19849820
14.  Osteoarthritis associated with estrogen deficiency 
Osteoarthritis (OA) affects all articular tissues and finally leads to joint failure. Although articular tissues have long been considered unresponsive to estrogens or their deficiency, there is now increasing evidence that estrogens influence the activity of joint tissues through complex molecular pathways that act at multiple levels. Indeed, we are only just beginning to understand the effects of estrogen deficiency on articular tissues during OA development and progression, as well as on the association between OA and osteoporosis. Estrogen replacement therapy and current selective estrogen receptor modulators have mixed effectiveness in preserving and/or restoring joint tissue in OA. Thus, a better understanding of how estrogen acts on joints and other tissues in OA will aid the development of specific and safe estrogen ligands as novel therapeutic agents targeting the OA joint as a whole organ.
PMCID: PMC2787275  PMID: 19804619
15.  Gout. Hyperuricemia and cardiovascular disease: how strong is the evidence for a causal link? 
An association between high levels of serum urate and cardiovascular disease has been proposed for many decades. However, it was only recently that compelling basic science data, small clinical trials, and epidemiological studies have provided support to the idea of a true causal effect. In this review we present recently published data that study the association between hyperuricemia and selected cardiovascular diseases, with a final conclusion about the possibility of this association being causal.
PMCID: PMC2745789  PMID: 19725932
16.  The determinants of susceptibility/resistance to adjuvant arthritis in rats 
Adjuvant arthritis (AA) serves as an excellent model for human rheumatoid arthritis. AA is readily inducible in certain rat strains, but not in others. Susceptibility/resistance to AA is determined by multiple factors. Among the genetic factors, both MHC and non-MHC genes contribute to arthritis susceptibility, and specific quantitative trait loci show association with the severity of the disease. Differential T-cell proliferative and cytokine responses, as well as antibody responses, to heat-shock proteins are evident when comparing AA-susceptible and AA-resistant rats. In addition, neuroendocrine factors and the housing environment can further modulate arthritis susceptibility/severity in particular rat strains.
PMCID: PMC2745784  PMID: 19678912
17.  Is there a feudal hierarchy amongst regulatory immune cells? More than just Tregs 
Nature has provided the developing immune system with several checkpoints important for the maintenance of tolerance and the prevention of autoimmunity. The regulatory mechanisms operating in the periphery of the system are mediated by subsets of regulatory cells, now considered principal contributors to peripheral tolerance. Regulatory T cells (Tregs) have received titanic interest in the past decade, placing them at the centre of immuno-suppressive reactions. However, it has become clearer that other immune suppressive cells inhibit auto-reactivity as effectively as Tregs. The function of Tregs and other regulatory cells in rheumatoid arthritis will be discussed in this review.
PMCID: PMC2745781  PMID: 19664198
18.  Rheumatoid arthritis and smoking: putting the pieces together 
Besides atherosclerosis and lung cancer, smoking is considered to play a major role in the pathogenesis of autoimmune diseases. It has long been known that there is a connection between rheumatoid factor-positive rheumatoid arthritis and cigarette smoking. Recently, an important gene–environment interaction has been revealed; that is, carrying specific HLA-DRB1 alleles encoding the shared epitope and smoking establish a significant risk for anti-citrullinated protein antibody-positive rheumatoid arthritis. We summarize how smoking-related alteration of the cytokine balance, the increased risk of infections (the possibility of cross-reactivity) and modifications of autoantigens by citrullination may contribute to the development of rheumatoid arthritis.
PMCID: PMC2745780  PMID: 19678909
19.  Gout. Novel therapies for treatment of gout and hyperuricemia 
In the past few decades, gout has increased not only in prevalence, but also in clinical complexity, the latter accentuated in part by a dearth of novel advances in treatments for hyperuricemia and gouty arthritis. Fortunately, recent research reviewed here, much of it founded on elegant translational studies of the past decade, highlights how gout can be better managed with cost-effective, well-established therapies. In addition, the advent of both new urate-lowering and anti-inflammatory drugs, also reviewed here, promises for improved management of refractory gout, including in subjects with co-morbidities such as chronic kidney disease. Effectively delivering improved management of hyperuricemia and gout will require a frame shift in practice patterns, including increased recognition of the implications of refractory disease and frequent noncompliance of patients with gout, and understanding the evidence basis for therapeutic targets in serum urate-lowering and gouty inflammation.
PMCID: PMC2745774  PMID: 19664185
20.  Pathogenesis of tendinopathies: inflammation or degeneration? 
The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies.
PMCID: PMC2714139  PMID: 19591655
21.  Molecular therapies for systemic lupus erythematosus: clinical trials and future prospects 
The prognosis of patients with systemic lupus erythematosus has greatly improved since treatment regimens combining corticosteroids and immunosuppressive medications have been widely adopted in therapeutic strategies given to these patients. Immune suppression is evidently efficient but also leads to higher susceptibility to infectious and malignant diseases. Toxic effects and sometimes unexpectedly dramatic complications of current therapies have been progressively reported. Identifying novel molecular targets therefore remains an important issue in the treatment of lupus. The aim of this review article is to highlight emerging pharmacological options and new therapeutic avenues for lupus with a particular focus on non-antibody molecular strategies.
PMCID: PMC2714128  PMID: 19591653
22.  Progress in spondylarthritis. Immunopathogenesis of spondyloarthritis: which cells drive disease? 
Spondyloarthritides, or SpA, form a cluster of chronic inflammatory diseases with the axial skeleton as the most typical disease localisation, although extra-articular manifestations such as intestinal inflammation may frequently occur during the course of the disease. This review summarises recent progress in our understanding of the immunopathogenesis of SpA with special emphasis on the cellular constituents considered to be responsible for the initiation and/or perpetuation of inflammation. There are several arguments favouring a role for haematopoietic cells in the pathophysiology of spondyloarthritis, including HLA-B27-associated dendritic cell disturbances, HLA-B27 misfolding properties and T helper 17 cells. In addition, recent studies have pointed toward a pivotal role for stromal cells. A major challenge, however, remains to determine how recently identified genetic associations such as interleukin-23 receptor polymorphisms may influence cellular targets in spondyloarthritis.
PMCID: PMC2714138  PMID: 19591637
23.  Active immunization to tumor necrosis factor-α is effective in treating chronic established inflammatory disease: a long-term study in a transgenic model of arthritis 
Arthritis Research & Therapy  2009;11(6):R195.
Passive blockade of tumor necrosis factor-alpha (TNF-α) has demonstrated high therapeutic efficiency in chronic inflammatory diseases, such as rheumatoid arthritis, although some concerns remain such as occurrence of resistance and high cost. These limitations prompted investigations of an alternative strategy to target TNF-α. This study sought to demonstrate a long-lasting therapeutic effect on established arthritis of an active immunotherapy to human (h) TNF-α and to evaluate the long-term consequences of an endogenous anti-TNF-α response.
hTNF-α transgenic mice, which spontaneously develop arthritides from 8 weeks of age, were immunized with a heterocomplex (TNF kinoid, or TNF-K) composed of hTNF-α and keyhole limpet hemocyanin after disease onset. We evaluated arthritides by clinical and histological assessment, and titers of neutralizing anti-hTNF-α antibody by enzyme-linked immunosorbent assay and L929 assay.
Arthritides were dramatically improved compared to control mice at week 27. TNF-K-treated mice exhibited high levels of neutralizing anti-hTNF-α antibodies. Between weeks 27 and 45, all immunized mice exhibited symptoms of clinical deterioration and a parallel decrease in anti-hTNF-α neutralizing antibodies. A maintenance dose of TNF-K reversed the clinical deterioration and increased the anti-hTNF-α antibody titer. At 45 weeks, TNF-K long-term efficacy was confirmed by low clinical and mild histological scores for the TNF-K-treated mice. Injections of unmodified hTNF-α did not induce a recall response to hTNF-α in TNF-K immunized mice.
Anti-TNF-α immunotherapy with TNF-K has a sustained but reversible therapeutic efficacy in an established disease model, supporting the potential suitability of this approach in treating human disease.
PMCID: PMC3003505  PMID: 20030816
24.  Kitasato Symposium 2009: New Prospects for Cytokine Inhibition 
The Kitasato Symposium 2009: New Prospects for Cytokine Inhibition was held in Berlin, Germany from 7 to 9 May 2009. The key aims of this meeting were to bring together a group of front-line researchers and rheumatologists to evaluate the use of cytokine blockade and to examine the role of certain cytokines in the pathogenesis of rheumatoid arthritis and other autoimmune diseases. A keynote lecture delivered by Professor Jean-Michel Dayer provided an up-to-date overview of the interactions occurring between the immune system and acute phase proteins. Other speakers discussed the role of cytokines in rheumatoid arthritis, including their role in joint destruction, as well as their regulatory role upon T cells and B cells. The involvement of cytokines in other autoimmune diseases was also addressed.
PMCID: PMC3003512  PMID: 20067593
25.  Effective rheumatoid arthritis treatment requires comprehensive management strategies 
Work by Lee and colleagues has shown that decreased sleep quality and increased psychiatric distress increase pain sensitivity at both articular and nonarticular sites in rheumatoid arthritis (RA) patients. This work is consistent with prior studies showing that factors independent of RA disease activity can influence RA outcome measures. Owing to increasing pressure on rheumatologists to use outcome measures to inform treatment decisions, the work by Lee and colleagues highlights the need for comprehensive RA management strategies to understand and address the human factors that influence outcomes measures. Such strategies will ensure appropriate use of increasingly expensive therapies while maximizing patient satisfaction and reimbursement.
PMCID: PMC3003495  PMID: 20067592

Results 1-25 (310)