Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)
Year of Publication
Document Types
1.  Intrathecal levels of matrix metalloproteinases in systemic lupus erythematosus with central nervous system engagement 
Arthritis Research & Therapy  2004;6(6):R551-R556.
Symptoms originating from the central nervous system (CNS) occur frequently in patients with systemic lupus erythematosus (SLE), and CNS involvement in lupus is associated with increased morbidity and mortality. We recently showed that neurones and astrocytes are continuously damaged during the course of CNS lupus. The matrix metalloproteinases (MMPs) are a group of tissue degrading enzymes that may be involved in this ongoing brain destruction. The aim of this study was to examine endogenous levels of free, enzymatically active MMP-2 and MMP-9 in cerebrospinal fluid from patients with SLE. A total of 123 patients with SLE were evaluated clinically, with magnetic resonance imaging of brain and cerebrospinal fluid (CSF) analyses. Levels of free MMP-2 and MMP-9 were determined in CSF using an enzymatic activity assay. CSF samples from another 22 cerebrally healthy individuals were used as a control. Intrathecal MMP-9 levels were significantly increased in patients with neuropsychiatric SLE as compared with SLE patients without CNS involvement (P < 0.05) and healthy control individuals (P = 0.0012). Interestingly, significant correlations between MMP-9 and intrathecal levels of neuronal and glial degradation products were noted, indicating ongoing intrathecal degeneration in the brains of lupus patients expressing MMP-9. In addition, intrathecal levels of IL-6 and IL-8 – two cytokines that are known to upregulate MMP-9 – both exhibited significant correlation with MMP-9 levels in CSF (P < 0.0001), suggesting a potential MMP-9 activation pathway. Our findings suggest that proinflammatory cytokine induced MMP-9 production leads to brain damage in patients with CNS lupus.
PMCID: PMC1064867  PMID: 15535833
cerebrospinal fluid; magnetic resonance imaging of the brain; matrix metalloproteinase-2; matrix metalloproteinase-9; neuropsychiatric involvement in systemic lupus erythematosus
2.  Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice 
Arthritis Research & Therapy  2009;11(5):R132.
Dichloroacetate (DCA) has been in clinical use for the treatment of lactacidosis and inherited mitochondrial disorders. It has potent anti-tumor effects both in vivo and in vitro, facilitating apoptosis and inhibiting proliferation. The pro-apoptotic and anti-proliferative properties of DCA prompted us to investigate the effects of this compound in arthritis.
In the present study, we used DCA to treat murine collagen type II (CII)-induced arthritis (CIA), an experimental model of rheumatoid arthritis. DBA/1 mice were treated with DCA given in drinking water.
Mice treated with DCA displayed much slower onset of CIA and significantly lower severity (P < 0.0001) and much lower frequency (36% in DCA group vs. 86% in control group) of arthritis. Also, cartilage and joint destruction was significantly decreased following DCA treatment (P = 0.005). Moreover, DCA prevented arthritis-induced cortical bone mineral loss. This clinical picture was also reflected by lower levels of anti-CII antibodies in DCA-treated versus control mice, indicating that DCA affected the humoral response. In contrast, DCA had no effect on T cell- or granulocyte-mediated responses. The beneficial effect of DCA was present in female DBA/1 mice only. This was due in part to the effect of estrogen, since ovariectomized mice did not benefit from DCA treatment to the same extent as sham-operated controls (day 30, 38.7% of ovarectomized mice had arthritis vs. only 3.4% in sham-operated group).
Our results indicate that DCA delays the onset and alleviates the progression of CIA in an estrogen-dependent manner.
PMCID: PMC2787291  PMID: 19723321
3.  Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis 
Arthritis Research & Therapy  2009;11(4):R123.
In the present study we evaluated changes in the B cell phenotype in peripheral blood and bone marrow (BM) of patients with rheumatoid arthritis (RA) following anti-CD20 treatment using rituximab.
Blood and BM samples were obtained from 37 patients with RA prior to rituximab treatment. Ten of these patients were resampled 1 month following rituximab, 14 patients after 3 months and the remaining 13 patients were included in the long-term follow up. B cell populations were characterized by CD27/IgD/CD38/CD24 expression.
One and three months following rituximab BM retained up to 30% of B cells while circulation was totally depleted of B cells. Analysis of the remaining BM B cells showed prevalence of immature and/or transitional B cells (CD38++CD24++) and CD27+IgD- memory cells, while IgD+ cells were completely depleted. A significant reduction of CD27+ cells in BM and in circulation was observed long after rituximab treatment (mean 22 months), while levels of naive B cells in BM and in circulation were increased. The levels of rheumatoid factor decline after rituximab treatment but returned to baseline levels at the time of retreatment.
Anti-CD20 treatment achieves a depletion of IgD+ B cells shortly after the treatment. At the long term follow up, a reduction of CD27+ B cells was observed in blood and BM. The prolonged inability to up-regulate CD27 may inhibit the renewal of memory B cells. This reduction of CD27+ B cells does not prevent autoantibody production suggesting that mechanisms regulating the formation of auto reactive clones are not disrupted by rituximab.
PMCID: PMC2745807  PMID: 19686595
4.  Smoking and nicotine exposure delay development of collagen-induced arthritis in mice 
Recent epidemiologic studies have implicated smoking as an environmental risk factor for the development of rheumatoid arthritis (RA). The aim of the present study is the evaluation of the role of cigarette smoke (CS) in the pathogenesis of collagen-induced arthritis in mice.
DBA/1 mice exposed to CS for 16 weeks (n = 25) and mice exposed to nicotine in drinking water (n = 10) were immunized with collagen type II (CII). Severity of arthritis was evaluated clinically and morphologically and compared with control mice (n = 35). Intensity of inflammation was evaluated by serum IL-6 and TNF-α levels. Additionally, antibody response to CII (anti-CII) and citrullinated peptides (aCCP) was measured.
Clinical evaluation of arthritis showed a delayed onset of arthritis in CS-exposed mice compared with non-smoking controls (P < 0.05). Histologic index and weight changes were comparable between the groups; however, smoking mice presented less weight loss during the acute phase of the disease and gained weight significantly faster in the recovery phase (P < 0.05). Similar results were obtained in the mice exposed to nicotine. Nicotine also showed a direct anti-inflammatory effect diminishing IL-6 production by stimulated splenocytes in vitro (P < 0.001). Additionally, smoking mice had lower levels of aCCP and anti-CII antibodies compared with non-smoking (P < 0.05).
Neither smoking nor nicotine exposure aggravates development of CII-induced arthritis in mouse model. Moreover, CS exposure was associated with a lower level of anti-CII antibodies, providing a possible explanation for a delay of arthritis onset in this group.
PMCID: PMC2714144  PMID: 19519907
5.  Decreased levels of the gelsolin plasma isoform in patients with rheumatoid arthritis 
Arthritis Research & Therapy  2008;10(5):R117.
Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of 200 ± 50 mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsolin to animals improves outcomes following sepsis or burn injuries. In the present study, we investigated plasma gelsolin in patients with rheumatoid arthritis.
Circulating and intra-articular levels of plasma gelsolin were measured in 78 patients with rheumatoid arthritis using a functional (pyrene-actin nucleation) assay and compared with 62 age- and gender-matched healthy controls.
Circulating plasma gelsolin levels were significantly lower in patients with rheumatoid arthritis compared with healthy controls (141 ± 32 versus 196 ± 40 mg/L, P = 0.0002). The patients' intra-articular plasma gelsolin levels were significantly lower than in the paired plasma samples (94 ± 24 versus 141 ± 32 mg/L, P = 0.0001). Actin was detected in the synovial fluids of all but four of the patients, and immunoprecipitation experiments identified gelsolin-actin complexes.
The plasma isoform of gelsolin is decreased in the plasma of patients with rheumatoid arthritis compared with healthy controls. The reduced plasma concentrations in combination with the presence of actin and gelsolin-actin complexes in synovial fluids suggest a local consumption of this potentially anti-inflammatory protein in the inflamed joint.
PMCID: PMC2592804  PMID: 18822171
6.  Induction of arthritis by high mobility group box chromosomal protein 1 is independent of tumour necrosis factor signalling 
TNFα and high mobility group box chromosomal protein 1 (HMGB1) are two potent proinflammatory cytokines implicated as important mediators of arthritis. Increased levels of these cytokines are found in the joints of rheumatoid arthritis patients, and the cytokines trigger arthritis when applied into the joints of naïve mice. HMGB1 is actively released from immune cells in response to TNFα; once released, HMGB1 in turn induces production of several proinflammatory cytokines – including IL-6 and TNFα – by macrophages. Whether HMGB1-induced arthritis is mediated via the TNFα pathway, however, is unknown. The purpose of the present study was to investigate whether the arthritis-inducing effect of HMGB1 is dependent on TNFα expression in vivo and to assess whether TNFα deficiency affects a proinflammatory cytokine response to HMGB1 in vitro.
TNFα knockout mice and backcrossed control animals on a C57Bl6 background were injected intraarticularly with 5 μg HMGB1. Joints were dissected 3 days after intraarticular injection and were evaluated histologically by scoring the frequency and severity of arthritis. For in vitro studies, mouse spleen cultures from TNFα knockout mice and from control mice were incubated with different doses of HMGB1, and cell culture supernatants were collected at different time points for analysis of IL-6.
Intraarticular injection of HMGB1 into healthy mouse joints resulted in an overall frequency of 32% to 39% arthritic animals. No significant differences were found with respect to the severity and incidence of synovitis between mice deficient for TNFα (seven out of 18 mice with arthritis) in comparison with control TNFα+/+ animals (six out of 19). No significant differences were detected between spleen cells from TNFα+/+ mice versus TNFα-/- mice regarding IL-6 production upon stimulation with highly purified HMGB1 after 24 hours and 48 hours. Upon stimulation with a suboptimal dose of recombinant HMGB1, however, the splenocytes from TNFα+/+ animals released significantly more IL-6 than cells from the knockout mice (602 ± 112 pg/ml and 304 ± 50 pg/ml, respectively; P < 0.05).
Our data show that HMGB1-triggered joint inflammation is not mediated via the TNF pathway. Combined with our previous study, we suggest that HMGB1-triggered arthritis is probably mediated through IL-1 activation.
PMCID: PMC2483464  PMID: 18582368
7.  Expression and functional properties of antibodies to tissue inhibitors of metalloproteinases (TIMPs) in rheumatoid arthritis 
Arthritis Research & Therapy  2005;7(5):R1014-R1022.
Tissue inhibitors of matrix metalloproteinases (TIMPs) regulate the breakdown of extracellular matrix components and play an important role in tissue remodelling and growth, in both physiological and pathological conditions. We studied the autoimmune response to TIMPs in patients with rheumatoid arthritis (RA). Eighty-nine paired blood and synovial fluid samples from patients with RA were assessed for their reactivity with recombinant tissue inhibitors of metalloproteinases (TIMPs) 1 to 4 by an ELISA and were compared with blood from 62 healthy controls and 21 synovial fluid samples from patients with degenerative joint diseases. Presence of antibodies was established as the absorbance of the sample more than 2 standard deviations above the mean of the controls. In addition, immunoglobulin G (IgG) from blood samples of RA patients possessing TIMP antibodies was isolated on protein A–sepharose and tested for the in vitro ability to neutralize TIMP-2-dependent effects on metalloproteinase 9 (MMP9). Anti-TIMP antibodies were found in 56% of RA samples but in only 5% of the controls (P < 0.005). RA patients had high frequencies of antibodies against all TIMPs except TIMP-3. TIMP-2 antibodies were most frequently found (33%), being significantly more prevalent (P = 0.024) in patients with nonerosive than erosive RA. TIMP-1 antibodies were significantly more often found in synovial fluid samples than in the matched blood samples (P < 0.025). Importantly, the IgG fraction containing TIMP antibodies down-regulated the TIMP-2 inhibitory effect, thereby supporting MMP9 activity in vitro. In the present study, we show that RA patients frequently develop autoimmune response to TIMPs that may act as a functionally significant regulator of MMP activity and thereby of joint destruction.
PMCID: PMC1257425  PMID: 16207317
8.  Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control 
Arthritis Research & Therapy  2005;7(4):R817-R824.
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily being expressed as a cell surface molecule and binding a variety of ligands. One of these ligands is high-mobility group box chromosomal protein 1, a potent proinflammatory cytokine, expression of which is increased in synovial tissue and in synovial fluid of rheumatoid arthritis (RA) patients. The interaction of high-mobility group box chromosomal protein 1 with cell-surface RAGE leads to an inflammatory response. In contrast, the presence of soluble RAGE (sRAGE) may abrogate cellular activation since the ligand is bound prior to interaction with the surface receptor.
Our aim was to analyse to what extent sRAGE is present in patients with chronic joint inflammation (RA) as compared with patients with non-inflammatory joint disease and with healthy subjects, and to assess whether there is an association between sRAGE levels and disease characteristics.
Matching samples of blood and synovial fluid were collected from 62 patients with RA with acute joint effusion. Blood from 45 healthy individuals, synovial fluid samples from 33 patients with non-inflammatory joint diseases and blood from six patients with non-inflammatory joint diseases were used for comparison. sRAGE levels were analysed using an ELISA.
RA patients displayed significantly decreased blood levels of sRAGE (871 ± 66 pg/ml, P < 0.0001) as compared with healthy controls (1290 ± 78 pg/ml) and with patients with non-inflammatory joint disease (1569 ± 168 pg/ml). Importantly, sRAGE levels in the synovial fluid of RA patients (379 ± 36 pg/ml) were lower than in corresponding blood samples and correlated significantly with blood sRAGE. Interestingly, a significantly higher sRAGE level was found in synovial fluid of RA patients treated with methotrexate as compared with patients without disease-modifying anti-rheumatic treatment.
We conclude that a decreased level of sRAGE in patients with RA might increase the propensity towards inflammation, whereas treatment with methotrexate counteracts this feature.
PMCID: PMC1175032  PMID: 15987483
9.  Balance between survivin, a key member of the apoptosis inhibitor family, and its specific antibodies determines erosivity in rheumatoid arthritis 
Arthritis Research & Therapy  2005;7(2):R349-R358.
Rheumatoid arthritis (RA) is a highly heterogeneous disease with respect to its joint destructivity. The reasons underlying this heterogeneity are unknown. Deficient apoptosis in rheumatoid synovial tissue has been recently demonstrated. We have therefore decided to study the synovial expression of survivin, a key member of the apoptosis inhibitor family. The levels of survivin and antibodies against survivin were assessed by an ELISA in matched blood and synovial fluid samples collected from 131 RA patients. Results were related to joint erosivity at the time of sampling. Monocytes were transfected with survivin anti-sense oligonucleotides and were assessed for their ability to produce inflammatory cytokines. Survivin levels were significantly higher in patients with destructive disease as compared with in RA patients displaying a non-erosive disease. High survivin levels were an independent prognostic parameter for erosive RA. In contrast, high levels of antibodies against survivin were found in patients with non-erosive RA, and were negatively related to erosivity. Survivin levels in RA patients were influenced by treatment, being significantly lower among patients treated with disease-modifying anti-rheumatic drugs. Specific suppression of survivin mRNA resulted in downregulation of IL-6 production. We conclude that survivin determines the erosive course of RA, whereas survivin antibodies lead to a less aggressive course of the disease. These findings together with decreased survivin levels upon disease-modifying anti-rheumatic drug treatment, and the downregulation of inflammatory response using survivin anti-sense oligonucleotides, suggest that extracellular survivin expression mediates the erosive course of joint disease whereas autoimmune responses to the same molecule, manifested as survivin targeting antibodies, mediate protection.
PMCID: PMC1065333  PMID: 15743483
apoptosis; arthritis; autoimmunity; prognosis; survivin
10.  Decreased levels of soluble amyloid β-protein precursor and β-amyloid protein in cerebrospinal fluid of patients with systemic lupus erythematosus 
Arthritis Research & Therapy  2004;6(2):R129-R136.
Symptoms originating from the central nervous system (CNS) frequently occur in patients with systemic lupus erythematosus (SLE). These symptoms are extremely diverse, including a state of dementia. The aim of this study was to examine the cerebrospinal fluid (CSF) content of soluble molecules indicating axonal degeneration and amyloidogenesis.
One hundred and fourteen patients with SLE and age-matched controls were evaluated clinically, with magnetic resonance imaging of the brain and CSF analyses. Levels of tau, amyloid precursor protein (APP), β-amyloid protein (Aβ42), and transforming growth factor beta (TGF-β) were all determined using sandwich ELISAs.
APP and Aβ42 levels were significantly decreased in SLE patients irrespective of their CNS involvement, as compared with healthy controls. Patients with neuropsychiatric SLE who underwent a second lumbar puncture following successful cyclophosphamide treatment showed further decreases of Aβ42. CSF-tau levels were significantly increased in SLE patients showing magnetic resonance imaging-verified brain pathology as compared with SLE patients without such engagement. Importantly, tau levels displayed significant correlation to Aβ42 levels in the CSF. Finally, TGF-β levels were significantly increased in patients with neuropsychiatric SLE as compared with those without.
Low intrathecal levels of Aβ42 found in SLE patients seem to be a direct consequence of a diminished production of APP, probably mediated by heavy anti-inflammatory/immuno-suppressive therapy. Furthermore, our findings suggest that CSF tau can be used as a biochemical marker for neuronal degeneration in SLE. Finally, the increased TGF-β levels observed may support a notion of an ongoing anti-inflammatory response counteracting tissue injury caused by CNS lupus.
PMCID: PMC400431  PMID: 15059276
amyloid precursor protein; β-amyloid protein; cerebrospinal fluid; neuropsychiatric systemic lupus erythematosus; tau
11.  Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis 
Arthritis Research & Therapy  2003;5(5):R234-R240.
We investigated whether plasma and synovial fluid (SF) samples from patients with rheumatoid arthritis (RA) contained extracellular mitochondrial DNA (mtDNA) or the oxidatively damaged DNA adduct 8-hydroxy-2'-deoxyguanosine (8-oxodG). Moreover, we correlated the laboratory findings of the patients with RA with their levels of mtDNA and 8-oxodG. SF and plasma samples from 54 patients with RA, SF from 30 non-arthritic control subjects, and plasma from 22 healthy volunteers were collected. The samples were subjected to polymerase chain reaction (PCR) using mitochondrial genomic primers, and the products were analyzed by SDS–polyacrylamide-gel electrophoresis. The intensities of the PCR-amplified bands were quantified and normalized to a reference sample. Furthermore, the SF samples were assayed by enzyme-linked immunosorbent assay for 8-oxodG. Extracellular PCR-amplifiable mtDNA was detected in the SF of 38 of 54 (70%) patients with RA, but not in any of the SF controls. PCR-amplifiable mtDNA was detected in the plasma of 30 of 54 (56%) of patients with RA and in 6 of 22 (27%) of the healthy volunteers. The levels of mtDNA in the plasma and SF samples of patients with RA were significantly higher (P < 0.0001) than in the respective control samples. The presence of both mtDNA and 8-oxodG in SF was significantly correlated with the presence of rheumatoid factor in the patients with RA. Extracellular mtDNA and oxidized DNA were detected in the SF of the great majority of patients with RA, but were absent or present at low levels in the control SF. These findings indicate that endogenous nucleic acid compounds might participate in joint inflammation by activating immune cells in the joints to produce proinflammatory cytokines.
PMCID: PMC193725  PMID: 12932286
8-hydroxy-2'-deoxyguanosine; mitochondrial DNA; rheumatoid arthritis; synovial fluid.
12.  Urokinase, a constitutive component of the inflamed synovial fluid, induces arthritis 
Arthritis Research & Therapy  2002;5(1):R9-R17.
Urokinase plasminogen activator (uPA) is an important regulator of fibrinolysis in synovial fluid. An increase of uPA activity and expression of its receptor have been reported in joints of patients with rheumatoid arthritis (RA). The aim of the present study was to assess the arthritogenic capacity of uPA and the mechanisms by which this effect is mediated. uPA was injected into the knee joints of healthy mice, and morphological signs of arthritis were assessed 4 days after the injection. The prerequisite of different leukocyte populations for the development of uPA-triggered arthritis was assessed by selective cell depletion. The inflammatory capacity of uPA was assessed in vitro. Finally, levels of uPA were measured in 67 paired blood and synovial fluid samples from RA patients. The synovial fluid from RA patients displayed higher levels of uPA compared with blood samples. Morphological signs of arthritis were found in 72% of uPA-injected joints compared with in only 18% of joints injected with PBS (P < 0.05). Synovitis was characterised by infiltration of CD4-Mac-1+ mononuclear cells, by the formation of pannus and by occasional cartilage destruction. The absence of monocytes and lymphocytes diminished the frequency of synovitis (P < 0.01), indicating an arthritogenic role of both these leukocyte populations. Synthetic uPA inhibitor downregulated the incidence of uPA-triggered arthritis by 50%. uPA induced arthritis, stimulating the release of proinflammatory cytokines IL-6, IL-1β and tumour necrosis factor alpha. Accumulation of uPA locally in the joint cavity is a typical finding in erosive RA. uPA exerts potent arthritogenic properties and thus may be viewed as one of the essential mediators of joint inflammation.
PMCID: PMC154426  PMID: 12716448
arthritis; inflammation; urokinase plasminogen activator

Results 1-12 (12)