Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)
Year of Publication
1.  14-3-3η is a novel mediator associated with the pathogenesis of rheumatoid arthritis and joint damage 
The aim of this study was to investigate whether 14-3-3η, a specific isoform of a family of proteins regulating processes such as cellular signalling, activates cell-signalling pathways and induces factors known to contribute to the pathophysiology of rheumatoid arthritis (RA). We also investigated whether 14-3-3η is associated with more severe disease in both early and established RA.
We investigated the effect of 14-3-3η on the activation of RA-relevant signalling cascades and induction of proinflammatory mediators that contribute to the joint damage process. 14-3-3η titres from 33 patients with early RA (mean RA duration = 1.8 months) and from 40 patients with established RA were measured in serum drawn at the 3-year time point of the Behandel Strategieën study. The relationship between 14-3-3η titres and standard clinical variables was investigated by correlation analysis. The association with radiographic damage and radiographic progression over at least a 2-year period was investigated using univariate and multivariate regression analyses.
14-3-3η activated selected members of the mitogen-activated protein kinase (MAPK) family, mainly extracellular regulated kinase 1/2 and c-Jun kinase, but not p38MAPK. Activation by 14-3-3η, using levels spanning the concentration range found in RA patient serum, resulted in the induction of inflammatory transcripts such as interleukin 1 (IL-1) and IL-6 and factors linked to the joint damage process, such as receptor activator of nuclear factor κB ligand and matrix metalloproteinase 1. Serum 14-3-3η correlated significantly with rheumatoid factor (RF) (r = 0.43) and anticitrullinated protein antibodies (ACPAs) (r = 0.31) in the early RA cohort, but not with C-reactive protein (CRP) or the Disease Activity Score in 28 joints in either cohort. Serum 14-3-3η concentrations were significantly higher in patients with radiographically assessed joint damage and in those who had radiographic progression. By multivariate analysis, we show that 14-3-3η complemented markers such as CRP, RF and ACPA in informing RA radiographic status and/or progression.
Extracellular 14-3-3η activates key signalling cascades and induces factors associated with the pathogenesis of RA at concentrations found in patients with RA, and its expression is higher in patients with radiographic damage and RA progression.
PMCID: PMC4060379  PMID: 24751211
2.  Expression of IL-20 in synovium and lesional skin of patients with psoriatic arthritis: differential response to alefacept treatment 
Arthritis Research & Therapy  2012;14(5):R200.
Psoriatic arthritis (PsA) is an inflammatory joint disease associated with psoriasis. Alefacept (a lymphocyte function-associated antigen (LFA)-3 Ig fusion protein that binds to CD2 and functions as an antagonist to T-cell activation) has been shown to result in improvement in psoriasis but has limited effectiveness in PsA. Interleukin-20 (IL-20) is a key proinflammatory cytokine involved in the pathogenesis of psoriasis. The effects of alefacept treatment on IL-20 expression in the synovium of patients with psoriasis and PsA are currently unknown.
Eleven patients with active PsA and chronic plaque psoriasis were treated with alefacept (7.5 mg per week for 12 weeks) in an open-label study. Skin biopsies were taken before and after 1 and 6 weeks, whereas synovial biopsies were obtained before and 4 and 12 weeks after treatment. Synovial biopsies from patients with rheumatoid arthritis (RA) (n = 10) were used as disease controls. Immunohistochemical analysis was performed to detect IL-20 expression, and stained synovial tissue sections were evaluated with digital image analysis. Double staining was performed with IL-20 and CD68 (macrophages), and conversely with CD55 (fibroblast-like synoviocytes, FLSs) to determine the phenotype of IL-20-positive cells in PsA synovium. IL-20 expression in skin sections (n = 6) was analyzed semiquantitatively.
IL-20 was abundantly expressed in both PsA and RA synovial tissues. In inflamed PsA synovium, CD68+ macrophages and CD55+ FLSs coexpressed IL-20, and its expression correlated with the numbers of FLSs. IL-20 expression in lesional skin of PsA patients decreased significantly (P = 0.04) 6 weeks after treatment and correlated positively with the Psoriasis Area and Severity Index (PASI). IL-20 expression in PsA synovium was not affected by alefacept.
Conceivably, the relatively limited effectiveness of alefacept in PsA patients (compared with anti-tumor necrosis factor (TNF) therapy) might be explained in part by persistent FLS-derived IL-20 expression.
PMCID: PMC3580512  PMID: 23006144
3.  Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis 
Synovial tissue macrophages play a key role in chronic inflammatory arthritis, but the contribution of different macrophage subsets in this process remains largely unknown. The main in vitro polarized macrophage subsets are classically (M1) and alternatively (M2) activated macrophages, the latter comprising interleukin (IL)-4 and IL-10 polarized cells. Here, we aimed to evaluate the polarization status of synovial macrophages in spondyloarthritis (SpA) and rheumatoid arthritis (RA).
Expression of polarization markers on synovial macrophages, peripheral blood monocytes, and in vitro polarized monocyte-derived macrophages from SpA versus RA patients was assessed by immunohistochemistry and flow cytometry, respectively. The polarization status of the intimal lining layer and the synovial sublining macrophages was assessed by double immunofluorescence staining.
The expression of the IL-10 polarization marker cluster of differentiation 163 (CD163) was increased in SpA compared with RA intimal lining layer, but no differences were found in other M1 and M2 markers between the diseases. Furthermore, no significant phenotypic differences in monocytes and in vitro polarized monocyte-derived macrophages were seen between SpA, RA, and healthy controls, indicating that the differential CD163 expression does not reflect a preferential M2 polarization in SpA. More detailed analysis of intimal lining layer macrophages revealed a strong co-expression of the IL-10 polarization markers CD163 and cluster of differentiation 32 (CD32) but not any of the other markers in both SpA and RA. In contrast, synovial sublining macrophages had a more heterogeneous phenotype, with a majority of cells co-expressing M1 and M2 markers.
The intimal lining layer but not synovial sublining macrophages display an IL-10 polarized-like phenotype, with increased CD163 expression in SpA versus RA synovitis. These differences in the distribution of the polarized macrophage subset may contribute to the outcome of chronic synovitis.
PMCID: PMC3446447  PMID: 22494514
4.  Rituximab treatment in rheumatoid arthritis: how does it work? 
Treatment with the chimerical monoclonal antibody rituximab results in CD20-directed B cell depletion. Although this depletion is almost complete in the peripheral blood of nearly all patients with rheumatoid arthritis, a proportion of patients does not exhibit a clinical response. The paper by Nakou and colleagues suggests that a decrease in CD19+CD27+ memory B cells in both peripheral blood and bone marrow precedes the clinical response to rituximab. This finding adds to the emerging evidence that lack of response to rituximab is associated with persistence of B lineage cells in specific body compartments.
PMCID: PMC3003538  PMID: 20017888
5.  Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? 
The nuclear factor-κB (NF-κB) family of transcription factors is essential for the expression of pro-inflammatory cytokines, but can also induce regulatory pathways. NF-κB can be activated via two distinct pathways: the classical or canonical pathway, and the alternative or non-canonical pathway. It is well established that the canonical NF-κB pathway is essential both in acute inflammatory responses and in chronic inflammatory diseases, including rheumatoid arthritis (RA). Although less extensively studied, the non-canonical NF-κB pathway is not only central in lymphoid organ development and adaptive immune responses, but is also thought to play an important role in the pathogenesis of RA. Importantly, this pathway appears to have cell type-specific functions and, since many different cell types are involved in the pathogenesis of RA, it is difficult to predict the net overall contribution of the non-canonical NF-κB pathway to synovial inflammation. In this review, we describe the current understanding of non-canonical NF-κB signaling in various important cell types in the context of RA and consider the relevance to the pathogenesis of the disease. In addition, we discuss current drugs targeting this pathway, as well as future therapeutic prospects.
PMCID: PMC4308835
6.  CD55 deposited on synovial collagen fibers protects from immune complex-mediated arthritis 
CD55, a glycosylphosphatidylinositol-anchored, complement-regulating protein (decay-accelerating factor), is expressed by fibroblast-like synoviocytes (FLS) with high local abundance in the intimal lining layer. We here explored the basis and consequences of this uncommon presence.
Synovial tissue, primary FLS cultures, and three-dimensional FLS micromasses were analyzed. CD55 expression was assessed by quantitative polymerase chain reaction (PCR), in situ hybridization, flow cytometry, and immunohistochemistry. Reticular fibers were visualized by Gomori staining and colocalization of CD55 with extracellular matrix (ECM) proteins by confocal microscopy. Membrane-bound CD55 was released from synovial tissue with phospholipase C. Functional consequences of CD55 expression were studied in the K/BxN serum transfer model of arthritis using mice that in addition to CD55 also lack FcγRIIB (CD32), increasing susceptibility for immune complex-mediated pathology.
Abundant CD55 expression seen in FLS of the intimal lining layer was associated with linearly oriented reticular fibers and was resistant to phospholipase C treatment. Expression of CD55 colocalized with collagen type I and III as well as with complement C3. A comparable distribution of CD55 was established in three-dimensional micromasses after ≥3 weeks of culture together with the ECM. CD55 deficiency did not enhance K/BxN serum-induced arthritis, but further exaggerated disease activity in Fcgr2b−/− mice.
CD55 is produced by FLS and deposited on the local collagen fiber meshwork, where it protects the synovial tissue against immune complex-mediated arthritis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-015-0518-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4325944  PMID: 25596646
7.  Advances in rheumatology: new targeted therapeutics 
Arthritis Research & Therapy  2011;13(Suppl 1):S5.
Treatment of inflammatory arthritides - including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis - has seen much progress in recent years, partially due to increased understanding of the pathogenesis of these diseases at the cellular and molecular levels. These conditions share some common mechanisms. Biologic therapies have provided a clear advance in the treatment of rheumatological conditions. Currently available TNF-targeting biologic agents that are licensed for at east one of the above-named diseases are etanercept, infliximab, adalimumab, golimumab, and certolizumab. Biologic agents with a different mechanism of action have also been approved in rheumatoid arthritis (rituximab, abatacept, and tocilizumab). Although these biologic agents are highly effective, there is a need for improved management strategies. There is also a need for education of family physicians and other healthcare professionals in the identification of early symptoms of inflammatory arthritides and the importance of early referral to rheumatologists for diagnosis and treatment. Also, researchers are developing molecules - for example, the Janus kinase inhibitor CP-690550 (tofacitinib) and the spleen tyrosine kinase inhibitor R788 (fostamatinib) - to target other aspects of the inflammatory cascade. Initial trial results with new agents are promising, and, in time, head-to-head trials will establish the best treatment options for patients. The key challenge is identifying how best to integrate these new, advanced therapies into daily practice.
PMCID: PMC3123966  PMID: 21624184
8.  Type I IFN and TNFα cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance 
A cross-regulation between type I IFN and TNFα has been proposed recently, where both cytokines are hypothesized to counteract each other. According to this model, different autoimmune diseases can be viewed as disequilibrium between both cytokines. As this model may have important clinical implications, the present review summarizes and discusses the currently available clinical evidence arguing for or against the proposed cross-regulation between TNFα and type I IFN. In addition, we review how this cross-regulation works at the cellular and molecular levels. Finally, we discuss the clinical relevance of this proposed cross-regulation for biological therapies such as type I IFN or anti-TNFα treatment.
PMCID: PMC2991015  PMID: 21062511
9.  A phase 2 randomized, double-blind study of AMG 108, a fully human monoclonal antibody to IL-1R, in patients with rheumatoid arthritis 
Arthritis Research & Therapy  2010;12(5):R192.
Preclinical work has suggested that IL-1 plays a critical role in the pathogenesis of rheumatoid arthritis (RA). The objective of the present study was to determine the effect of a long-acting IL-1 receptor inhibitor, AMG 108, in a double-blind, placebo-controlled, parallel-dosing study in patients with active RA who were receiving stable methotrexate (15 to 25 mg/week).
Patients were randomized equally to receive placebo or 50, 125, or 250 mg AMG 108 subcutaneously every 4 weeks for 6 months. The primary efficacy endpoint was a 20% improvement in the American College of Rheumatology response (ACR20) at week 24; other efficacy endpoints included the ACR50, the ACR70, and the RA disease activity score (28-joint count Disease Activity Score) responses, patient-reported outcomes, and pharmacokinetic parameters. Safety endpoints included treatment-emergent adverse events (AEs), infectious AEs, serious AEs, serious infections, injection site reactions, laboratory abnormalities, and antibodies to AMG 108.
Of 813 patients enrolled in the study, 204 patients were randomized to the 50 mg group, 203 to the 125 mg group, 203 to the 250 mg group, and 203 to placebo. At week 24, 40.4% of the 250 mg group, 36% of the 125 mg group, 30.9% of the 50 mg group, and 29.1% of the placebo group achieved an ACR20 (P = 0.022, 250 mg vs. placebo). Of the individual ACR components, numerical dose-dependent improvements were only seen in tender joint counts, pain (visual analog scale), and the acute phase reactants, erythrocyte sedimentation rate and C-reactive protein. No dose-related increase was observed in the incidence of treatment-emergent AEs. No deaths were reported, and the incidence of AEs and infections, serious AEs and infections, and withdrawals from study for safety were similar in the AMG 108 and placebo groups.
This large double-blind randomized trial with a long-acting IL-1 receptor blocker, AMG 108, is consistent with the experience of other IL-1 blockers, represents a definitive experiment showing that IL-1 inhibition provides only moderate symptomatic amelioration of arthritis activity in the majority of RA patients, and provides an answer to a question that has been discussed for many years in the rheumatologic community.
Trial Registration NCT00293826
PMCID: PMC2991028  PMID: 20950476
10.  Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment 
Cross-regulation between TNF and type I IFN has been postulated to play an important role in autoimmune diseases. Therefore, we determined the effect of TNF blockade in rheumatoid arthritis (RA) on the type I IFN response gene activity in relation to clinical response.
Peripheral blood from 33 RA patients was collected in PAXgene tubes before and after the start of infliximab treatment. In a first group of 15 patients the baseline expression of type I IFN-regulated genes was determined using cDNA microarrays and compared to levels one month after treatment. The remaining 18 patients were studied as an independent group for validation using quantitative polymerase chain reaction (qPCR).
Gene expression analysis revealed that anti-TNF antibody treatment induced a significant increase in type I IFN response gene activity in a subset of RA patients, whereas expression levels remained similar or were slightly decreased in others. The findings appear clinically relevant since patients with an increased IFN response gene activity after anti-TNF therapy had a poor clinical outcome. This association was confirmed and extended for an IFN response gene set consisting of OAS1, LGALS3BP, Mx2, OAS2 and SERPING1 in five EULAR good and five EULAR poor responders, by qPCR.
Regulation of IFN response gene activity upon TNF blockade in RA is not as consistent as previously described, but varies between patients. The differential changes in IFN response gene activity appear relevant to the clinical outcome of TNF blockade in RA.
PMCID: PMC2875639  PMID: 20096109
11.  A Rac1 inhibitory peptide suppresses antibody production and paw swelling in the murine collagen-induced arthritis model of rheumatoid arthritis 
The Rho family GTPase Rac1 regulates cytoskeletal rearrangements crucial for the recruitment, extravasation and activation of leukocytes at sites of inflammation. Rac1 signaling also promotes the activation and survival of lymphocytes and osteoclasts. Therefore, we assessed the ability of a cell-permeable Rac1 carboxy-terminal inhibitory peptide to modulate disease in mice with collagen-induced arthritis (CIA).
CIA was induced in DBA/1 mice, and in either early or chronic disease, mice were treated three times per week by intraperitoneal injection with control peptide or Rac1 inhibitory peptide. Effects on disease progression were assessed by measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology. Serum levels of anti-collagen type II antibodies were measured by enzyme-linked immunosorbent assay. T-cell phenotypes and activation were assessed by fluorescence-activated cell sorting analysis. Results were analyzed using Mann-Whitney U and unpaired Student t tests.
Treatment of mice with Rac1 inhibitory peptide resulted in a decrease in paw swelling in early disease and to a lesser extent in more chronic arthritis. Of interest, while joint destruction was unaffected by Rac1 inhibitory peptide, anti-collagen type II antibody production was significantly diminished in treated mice, in both early and chronic arthritis. Ex vivo, Rac1 inhibitory peptide suppressed T-cell receptor/CD28-dependent production of tumor necrosis factor α, interferon γ and interleukin-17 by T cells from collagen-primed mice, and reduced induction of ICOS and CD154, T-cell costimulatory proteins important for B-cell help.
The data suggest that targeting of Rac1 with the Rac1 carboxy-terminal inhibitory peptide may suppress T-cell activation and autoantibody production in autoimmune disease. Whether this could translate into clinically meaningful improvement remains to be shown.
PMCID: PMC2875627  PMID: 20053277
12.  Local expression of tumor necrosis factor-receptor 1:immunoglobulin G can induce salivary gland dysfunction in a murine model of Sjögren's syndrome 
Arthritis Research & Therapy  2009;11(6):R189.
Tumor necrosis factor is a pleiotropic cytokine with potent immune regulatory functions. Although tumor necrosis factor inhibitors have demonstrated great utility in treating other autoimmune diseases, such as rheumatoid arthritis, there are conflicting results in Sjögren's syndrome. The aim of this study was to assess the effect of a locally expressed tumor necrosis factor inhibitor on the salivary gland function and histopathology in an animal model of Sjögren's syndrome.
Using in vivo adeno associated viral gene transfer, we have stably expressed soluble tumor necrosis factor-receptor 1-Fc fusion protein locally in the salivary glands in the Non Obese Diabetic model of Sjögren's syndrome. Pilocarpine stimulated saliva flow was measured to address the salivary gland function and salivary glands were analyzed for focus score and cytokine profiles. Additionally, cytokines and autoantibody levels were measured in plasma.
Local expression of tumor necrosis factor-receptor 1:immunoglobulin G fusion protein resulted in decreased saliva flow over time. While no change in lymphocytic infiltrates or autoantibody levels was detected, statistically significant increased levels of tumor growth factor-β1 and decreased levels of interleukin-5, interleukin-12p70 and interleukin -17 were detected in the salivary glands. In contrast, plasma levels showed significantly decreased levels of tumor growth factor-β1 and increased levels of interleukin-4, interferon-γ, interleukin-10 and interleukin-12p70.
Our findings suggest that expression of tumor necrosis factor inhibitors in the salivary gland can have a negative effect on salivary gland function and that other cytokines should be explored as points for therapeutic intervention in Sjögren's syndrome.
PMCID: PMC3003528  PMID: 20003451
13.  The Ras guanine nucleotide exchange factor RasGRF1 promotes matrix metalloproteinase-3 production in rheumatoid arthritis synovial tissue 
Arthritis Research & Therapy  2009;11(4):R121.
Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS.
Expression of RasGRF1, MMP-1, MMP-3, and IL-6 was detected in synovial tissue by immunohistochemistry and stained sections were evaluated by digital image analysis. Expression of RasGRF1 in FLS and synovial tissue was also assessed by immunoblotting. Double staining was performed to detect proteins in specific cell populations, and cells producing MMP-1 and MMP-3. RasGRF1 expression was manipulated in RA FLS by cDNA transfection and gene silencing, and effects on MMP-1, TIMP-1, MMP-3, IL-6, and IL-8 production measured by ELISA.
Expression of RasGRF1 was significantly enhanced in RA synovial tissue, and detected in FLS and synovial macrophages in situ. In cultured FLS and synovial biopsies, RasGRF1 was detected by immunoblotting as a truncated fragment lacking its negative regulatory domain. Production of MMP-1 and MMP-3 in RA but not non-RA synovial tissue positively correlated with expression of RasGRF1 and co-localized in cells expressing RasGRF1. RasGRF1 overexpression in FLS induced production of MMP-3, and RasGRF1 silencing inhibited spontaneous MMP-3 production.
Enhanced expression and post-translational modification of RasGRF1 contributes to MMP-3 production in RA synovial tissue and the semi-transformed phenotype of RA FLS.
PMCID: PMC2745805  PMID: 19678938
14.  Distinct synovial immunopathology in Behçet disease and psoriatic arthritis 
The aim of the study was to investigate synovial immunopathology differences between early Behçet disease (BD) and psoriatic arthritis (PsA).
Needle arthroscopy of an inflamed knee joint was performed in patients with early untreated BD (n = 8) and PsA (n = 9). Synovial fluid (SF) was collected for cytokines, perforin, and granzyme analysis. Eight synovial biopsies per patient were obtained for immunohistochemical analysis of the cellular infiltrate (T cells, natural killer cells, macrophages, B cells, plasma cells, mast cells, and neutrophils), blood vessels as well as expression of perforin and granzyme. The stained slides were evaluated by digital image analysis.
The global degree of synovial inflammation was similar in the two types of arthritis. In the analysis of the innate immune cell infiltration, there was a striking neutrophilic inflammation in BD synovitis whereas PsA displayed significantly higher numbers of cells positive for c-kit, a marker of mast cells. As for lymphocytes, CD3+ T cells, but neither CD20+ B cells nor CD138+ plasma cells, were significantly increased in BD versus PsA. Further analysis of the T-lymphocyte population showed no clear shift in CD4/CD8 ratio or Th1/Th2/Th17 profile. The SF levels of perforin, an effector molecule of cytotoxic cells, displayed a significant four- to fivefold increase in BD.
This systematic comparative analysis of early untreated synovitis identifies neutrophils and T lymphocytes as important infiltrating cell populations in BD. Increased levels of perforin in BD suggest the relevance of cytotoxicity in this disease.
PMCID: PMC2688249  PMID: 19196489
15.  Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? 
Cellular activation, proliferation and survival in chronic inflammatory diseases is regulated not only by engagement of signal trans-duction pathways that modulate transcription factors required for these processes, but also by epigenetic regulation of transcription factor access to gene promoter regions. Histone acetyl trans-ferases coordinate the recruitment and activation of transcription factors with conformational changes in histones that allow gene promoter exposure. Histone deacetylases (HDACs) counteract histone acetyl transferase activity through the targeting of both histones as well as nonhistone signal transduction proteins important in inflammation. Numerous studies have indicated that depressed HDAC activity in patients with inflammatory airway diseases may contribute to local proinflammatory cytokine production and diminish patient responses to corticosteroid treatment. Recent observations that HDAC activity is depressed in rheumatoid arthritis patient synovial tissue have predicted that strategies restoring HDAC function may be therapeutic in this disease as well. Pharmacological inhibitors of HDAC activity, however, have demonstrated potent therapeutic effects in animal models of arthritis and other chronic inflammatory diseases. In the present review we assess and reconcile these outwardly paradoxical study results to provide a working model for how alterations in HDAC activity may contribute to pathology in rheumatoid arthritis, and highlight key questions to be answered in the preclinical evaluation of compounds modulating these enzymes.
PMCID: PMC2592777  PMID: 18983693
16.  Mannose-binding lectin deficiency is associated with early onset of polyarticular juvenile rheumatoid arthritis: a cohort study 
Mannose-binding lectin (MBL) is an innate immune protein. The aim of our study was to determine whether genetically determined MBL deficiency is associated with susceptibility to juvenile rheumatoid arthritis (JRA) and whether MBL2 genotypes are associated with JRA severity.
In a retrospective cohort study of 218 patients with polyarthritis (n = 67) and oligoarthritis (n = 151), clinical and laboratory disease variables were obtained by clinical examination and chart reviews. Healthy Caucasian adults (n = 194) served as control individuals. MBL2 gene mutations were determined by Taqman analysis to identify genotypes with high, medium and low expression of MBL. Functional MBL plasma concentrations were measured using enzyme-linked immunosorbent assay. Associations between clinical and laboratory variables and MBL2 genotypes were determined by Kruskal-Wallis and χ2 tests.
MBL2 genotype frequencies were similar in polyarthritis and oligoarthritis patients as compared with control individuals. MBL plasma concentrations were associated with the high, medium and low MBL genotype expression groups (P < 0.01). In polyarthritis patients, the presence of low-expressing (deficient) MBL2 genotypes was associated with early age at onset of disease (P = 0.03). In oligoarthritis patients, patients with low-expressing MBL2 genotypes were more often in remission (81%) than patients in the medium (54%) and high (56%) genotype groups (P = 0.02). The remaining clinical and laboratory variables, such as arthritis severity index, presence of radiographic erosions and antinuclear antibody positivity, were not associated with MBL2 genotypes.
Genetically determined MBL deficiency does not increase susceptibility to JRA, but MBL deficiency is associated with a younger age at onset of juvenile polyarthritis. On the other hand, MBL-deficient children with juvenile oligoarthritis are more often in remission. Therefore, MBL appears to play a dual role in JRA.
PMCID: PMC2453777  PMID: 18334024
17.  CD97 neutralisation increases resistance to collagen-induced arthritis in mice 
Synovial tissue of rheumatoid arthritis (RA) patients is characterised by an influx and retention of CD97-positive inflammatory cells. The ligands of CD97, CD55, chondroitin sulfate B, and α5β1 (very late antigen [VLA]-5) are expressed abundantly in the synovial tissue predominantly on fibroblast-like synoviocytes, endothelium, and extracellular matrix. Based upon this expression pattern, we hypothesise CD97 expression to result in accumulation of inflammatory cells in the synovial tissue of RA patients. To determine the therapeutic effect of blocking CD97 in an animal model of RA, collagen-induced arthritis was induced in a total of 124 DBA/J1 mice. Treatment was started on day 21 (early disease) or on day 35 (longstanding disease) with the blocking hamster anti-mouse CD97 monoclonal antibody (mAb) 1B2, control hamster immunoglobulin, or NaCl, applied intraperitoneally three times a week. The paws were evaluated for clinical signs of arthritis and, in addition, examined by radiological and histological analysis. Mice receiving 0.5 mg CD97 mAb starting from day 21 had significantly less arthritis activity and hind paw swelling. Furthermore, joint damage and inflammation were reduced and granulocyte infiltration was decreased. When treatment was started on day 35, CD97 mAb treatment had similar effects, albeit less pronounced. The results support the notion that CD97 contributes to synovial inflammation and joint destruction in arthritis.
PMCID: PMC1779430  PMID: 17007638
18.  Local treatment with the selective IκB kinase β inhibitor NEMO-binding domain peptide ameliorates synovial inflammation 
Nuclear factor (NF)-κB is a key regulator of synovial inflammation. We investigated the effect of local NF-κB inhibition in rat adjuvant arthritis (AA), using the specific IκB kinase (IKK)-β blocking NF-κB essential modulator-binding domain (NBD) peptide. The effects of the NBD peptide on human fibroblast-like synoviocytes (FLS) and macrophages, as well as rheumatoid arthritis (RA) whole-tissue biopsies, were also evaluated. First, we investigated the effects of the NBD peptide on RA FLS in vitro. Subsequently, NBD peptides were administered intra-articularly into the right ankle joint of rats at the onset of disease. The severity of arthritis was monitored over time, rats were sacrificed on day 20, and tissue specimens were collected for routine histology and x-rays of the ankle joints. Human macrophages or RA synovial tissues were cultured ex vivo in the presence or absence of NBD peptides, and cytokine production was measured in the supernatant by enzyme-linked immunosorbent assay. The NBD peptide blocked interleukin (IL)-1-β-induced IκBα phosphorylation and IL-6 production in RA FLS. Intra-articular injection of the NBD peptide led to significantly reduced severity of arthritis (p < 0.0001) and reduced radiological damage (p = 0.04). This was associated with decreased synovial cellularity and reduced expression of tumor necrosis factor (TNF)-α and IL-1-β in the synovium. Incubation of human macrophages with NBD peptides resulted in 50% inhibition of IL-1-β-induced TNF-α production in the supernatant (p < 0.01). In addition, the NBD peptide decreased TNF-α-induced IL-6 production by human RA synovial tissue biopsies by approximately 42% (p < 0.01). Specific NF-κB blockade using a small peptide inhibitor of IKK-β has anti-inflammatory effects in AA and human RA synovial tissue as well as in two important cell types in the pathogenesis of RA: macrophages and FLS. These results indicate that IKK-β-targeted NF-κB blockade using the NBD peptide could offer a new approach for the local treatment of arthritis.
PMCID: PMC1779420  PMID: 16684367
19.  Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis 
Dendritic cells (DCs) comprise heterogeneous subsets of professional antigen-presenting cells, linking innate and adaptive immunity. Analysis of DC subsets has been hampered by a lack of specific DC markers and reliable quantitation assays. We characterised the immunophenotype and functional characteristics of psoriatic arthritis (PsA)-derived and rheumatoid arthritis (RA)-derived myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) to evaluate their potential role in arthritis. Circulating peripheral blood (PB) pDC numbers were significantly reduced in PsA patients (P = 0.0098) and RA patients (P = 0.0194), and mDCs were significantly reduced in RA patients (P = 0.0086) compared with healthy controls. The number of circulating mDCs in RA PB was significantly inversely correlated to C-reactive protein (P = 0.021). The phenotype of both DC subsets in PsA PB and RA PB was immature as compared with healthy controls. Moreover, CD62L expression was significantly decreased on both mDCs (PsA, P = 0.0122; RA, P = 0.0371) and pDCs (PsA, P = 0.0373; RA, P = 0.0367) in PB. Both mDCs and pDCs were present in PsA synovial fluid (SF) and RA SF, with the mDC:pDC ratio significantly exceeding that in matched PB (PsA SF, P = 0.0453; RA SF, P = 0.0082). pDCs isolated from RA SF and PsA SF displayed an immature phenotype comparable with PB pDCs. RA and PsA SF mDCs, however, displayed a more mature phenotype (increased expression of CD80, CD83 and CD86) compared with PB mDCs. Functional analysis revealed that both SF DC subsets matured following toll-like receptor stimulation. pDCs from PB and SF produced interferon alpha and tumour necrosis factor alpha on TLR9 stimulation, but only SF pDCs produced IL-10. Similarly, mDCs from PB and SF produced similar tumour necrosis factor alpha levels to TLR2 agonism, whereas SF mDCs produced more IL-10 than PB controls. Circulating DC subset numbers are reduced in RA PB and PsA PB with reduced CD62L expression. Maturation is incomplete in the inflamed synovial compartment. Immature DCs in SF may contribute to the perpetuation of inflammation via sampling of the inflamed synovial environment, and in situ presentation of arthritogenic antigen.
PMCID: PMC1526567  PMID: 16507115
20.  Reliability of computerized image analysis for the evaluation of serial synovial biopsies in randomized controlled trials in rheumatoid arthritis 
Arthritis Research & Therapy  2005;7(4):R862-R867.
Analysis of biomarkers in synovial tissue is increasingly used in the evaluation of new targeted therapies for patients with rheumatoid arthritis (RA). This study determined the intrarater and inter-rater reliability of digital image analysis (DIA) of synovial biopsies from RA patients participating in clinical trials. Arthroscopic synovial biopsies were obtained before and after treatment from 19 RA patients participating in a randomized controlled trial with prednisolone. Immunohistochemistry was used to detect CD3+ T cells, CD38+ plasma cells and CD68+ macrophages. The mean change in positive cells per square millimetre for each marker was determined by different operators and at different times using DIA. Nonparametric tests were used to determine differences between observers and assessments, and to determine changes after treatment. The intraclass correlations (ICCs) were calculated to determine the intrarater and inter-rater reliability. Intrarater ICCs showed good reliability for measuring changes in T lymphocytes (R = 0.87), plasma cells (R = 0.62) and macrophages (R = 0.73). Analysis by Bland–Altman plots showed no systemic differences between measurements. The smallest detectable changes were calculated and their discriminatory power revealed good response in the prednisolone group compared with the placebo group. Similarly, inter-rater ICCs also revealed good reliability for measuring T lymphocytes (R = 0.68), plasma cells (R = 0.69) and macrophages (R = 0.72). All measurements identified the same cell types as changing significantly in the treated patients compared with the placebo group. The measurement of change in total positive cell numbers in synovial tissue can be determined reproducibly for various cell types by DIA in RA clinical trials.
PMCID: PMC1175038  PMID: 15987488
21.  Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes 
Arthritis Research & Therapy  2005;7(3):R536-R544.
Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P < 0.0001) and MCP-1 concentrations (r = 0.81, P < 0.0001), as did the numbers of granulocyte-derived microparticles (r = 0.89, P < 0.0001 and r = 0.93, P < 0.0001, respectively). In contrast, GM-CSF levels were decreased. These results demonstrate that microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis.
PMCID: PMC1174949  PMID: 15899040
22.  Deactivation of endothelium and reduction in angiogenesis in psoriatic skin and synovium by low dose infliximab therapy in combination with stable methotrexate therapy: a prospective single-centre study 
Arthritis Research & Therapy  2004;6(4):R326-R334.
Psoriasis and psoriatic arthritis are inflammatory diseases that respond well to anti-tumour necrosis factor-α therapy. To evaluate the effects of anti-tumour necrosis factor-α treatment on expression of adhesion molecules and angiogenesis in psoriatic lesional skin and synovial tissue, we performed a prospective single-centre study with infliximab therapy combined with stable methotrexate therapy. Eleven patients with both active psoriasis and psoriatic arthritis received infusions of infliximab (3 mg/kg) at baseline, and at weeks 2, 6, 14 and 22 in an open-label study. In addition, patients continued to receive stable methotrexate therapy in dosages ranging from 5 to 20 mg/week. Clinical assessments, including Psoriasis Area and Severity Index (PASI) and Disease Activity Score (DAS), were performed at baseline and every 2 weeks afterward. In addition, skin biopsies from a target psoriatic plaque and synovial tissue biopsies from a target joint were taken before treatment and at week 4. Immunohistochemical analysis was performed to detect the number of blood vessels, the expression of adhesion molecules and the presence of vascular growth factors. Stained sections were evaluated by digital image analysis. At week 16, the mean PASI was reduced from 12.3 ± 2.4 at baseline to 1.8 ± 0.4 (P ≤ 0.02). The mean DAS was reduced from 6.0 ± 0.5 to 3.6 ± 0.6 (P ≤ 0.02). We found some fluctuations in DAS response as compared with the change in PASI, with the latter exhibiting a steady decrease over time. After 4 weeks the cell infiltrate was reduced in both skin and synovium. There was a significant reduction in the number of blood vessels in dermis and synovium at week 4. A significant reduction in the expression of αvβ3 integrin, a marker of neovascularization, was also found in both skin and synovium at week 4. In addition, a significant reduction in the expression of adhesion molecules was observed in both skin and synovium at week 4. We also observed a trend toward reduced expression of vascular endothelial growth factor in both skin and synovium. In conclusion, low-dose infliximab treatment leads to decreased neoangiogenesis and deactivation of the endothelium, resulting in decreased cell infiltration and clinical improvement in psoriasis and psoriatic arthritis.
PMCID: PMC464872  PMID: 15225368
Angiogenesis; immunotherapy; inflammation; psoriasis; psoriatic arthritis
23.  Chemokine blockade: a new era in the treatment of rheumatoid arthritis? 
Arthritis Research & Therapy  2004;6(3):93-97.
Blockade of chemokines or chemokine receptors is emerging as a new potential treatment for various immune-mediated conditions. This review focuses on the therapeutic potential in rheumatoid arthritis, based on studies in animal models and patients. Several knockout models as well as in vivo use of chemokine antagonists are discussed. Review of these data suggests that this approach might lead to novel therapeutic strategies in rheumatoid arthritis and other chronic inflammatory disorders.
PMCID: PMC416447  PMID: 15142257
chemokines; rheumatoid arthritis; synovial tissue
24.  Treatment with recombinant interferon-β reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis 
Arthritis Research & Therapy  2004;6(3):R239-R249.
We investigated the therapeutic potential and mechanism of action of IFN-β protein for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis was induced in DBA/1 mice. At the first clinical sign of disease, mice were given daily injections of recombinant mouse IFN-β or saline for 7 days. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were assessed histologically 8 days after the onset of arthritis. Proteoglycan depletion was determined by safranin O staining. Expression of cytokines, receptor activator of NF-κB ligand, and c-Fos was evaluated immunohistochemically. The IL-1-induced expression of IL-6, IL-8, and granulocyte/macrophage-colony-stimulating factor (GM-CSF) was studied by ELISA in supernatant of RA and osteoarthritis fibroblast-like synoviocytes incubated with IFN-β. We also examined the effect of IFN-β on NF-κB activity. IFN-β, at 0.25 μg/injection and higher, significantly reduced disease severity in two experiments, each using 8–10 mice per treatment group. IFN-β-treated animals displayed significantly less cartilage and bone destruction than controls, paralleled by a decreased number of positive cells of two gene products required for osteoclastogenesis, receptor activator of NF-κB ligand and c-Fos. Tumor necrosis factor α and IL-6 expression were significantly reduced, while IL-10 production was increased after IFN-β treatment. IFN-β reduced expression of IL-6, IL-8, and GM-CSF in RA and osteoarthritis fibroblast-like synoviocytes, correlating with reduced NF-κB activity. The data support the view that IFN-β is a potential therapy for RA that might help to diminish both joint inflammation and destruction by cytokine modulation.
PMCID: PMC416442  PMID: 15142270
antibodies; cytokines; inflammation; rheumatoid arthritis

Results 1-24 (24)