PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None
Journals
Year of Publication
2.  Vulnerability to traumatic stress in fibromyalgia patients: 19 month follow-up after the great East Japan disaster 
Arthritis Research & Therapy  2013;15(5):R130.
Introduction
The aim of this study was to investigate vulnerability and long-term influence of traumatic stress caused by the Great East Japan Disaster which occurred on March 11, 2011, in patients with fibromyalgia, which is a chronic pain syndrome probably involving central sensitization.
Methods
A total of 60 female patients with fibromyalgia were compared with female patients with rheumatoid arthritis (RA, n = 23) as another chronic pain disease, and with female healthy controls (HC, n = 26) in the observational study. To evaluate responses to traumatic stress, the scores of Impact of Event Scale-Revised (IES-R) were assessed one month after the disaster and every six months until 19 months after the disaster. We also evaluated levels of depression during the study period. To know the score of IES-R of patients with fibromyalgia during usual living, we assessed IES-R in another population of fibromyalgia patients without exposure to a great disaster.
Results
The mean score of IES-R one month after the disaster in the fibromyalgia group (24.6 [SD 18.9]) was significantly higher than that of RA group (13.4 [SD 14.5]) or HC group (9.1 [9.2]) (F = 9.96, p < 0.0001). However, the mean score of IES-R in fibromyalgia patients without exposure to a great disaster was (20.3 [SD 18.7]), which was almost the same value as the fibromyalgia group seven months after the disaster (20.2 [SD 19.5]). Repeated measures analysis of variance showed significant effect of time course in the depression-related symptoms (F = 6.68, P = 0.001), and a post-hoc test revealed that the number of depression-related symptoms one month before the disaster was significantly different from other time points until 19 months after the disaster, respectively.
Conclusions
Although response to acute stress induced by the great earthquake was likely to be settled within seven months after the disaster, depression-related symptoms have been increasing for more than one year after the disaster, despite exclusion of patients with major depression at baseline. This long-lasting worsening of depression-related symptoms may have been in response to chronic stress induced by the fear of radiation due to the nuclear power disaster. These findings suggest that patients with fibromyalgia are vulnerable to chronic stress rather than acute stress.
doi:10.1186/ar4310
PMCID: PMC3979128  PMID: 24286267
3.  A randomized, double-blind, multicenter, placebo-controlled phase III trial to evaluate the efficacy and safety of pregabalin in Japanese patients with fibromyalgia 
Arthritis Research & Therapy  2012;14(5):R217.
Introduction
Fibromyalgia is a chronic disorder characterized by widespread pain and tenderness. Prior trials have demonstrated the efficacy of pregabalin for the relief of fibromyalgia symptoms, and it is approved for the treatment of fibromyalgia in the United States. However, prior to this study, there has not been a large-scale efficacy trial in patients with fibromyalgia in Japan.
Methods
This randomized, double-blind, multicenter, placebo-controlled trial was conducted at 44 centers in Japan to assess the efficacy and safety of pregabalin for the symptomatic relief of pain in fibromyalgia patients. Patients aged ≥18 years who had met the criteria for fibromyalgia were randomized to receive either pregabalin, starting at 150 mg/day and increasing to a maintenance dose of 300 or 450 mg/day, or placebo, for 15 weeks. The primary efficacy endpoint was mean pain score at final assessment. Secondary endpoints included Patient Global Impression of Change (PGIC) together with measures of sleep, physical functioning and quality of life.
Results
A total of 498 patients (89% female) were randomized to receive either pregabalin (n = 250) or placebo (n = 248). Pregabalin significantly reduced mean pain score at final assessment (difference in mean change from baseline, compared with placebo -0.44; P = 0.0046) and at every week during the study (P <0.025). Key secondary endpoints were also significantly improved with pregabalin treatment compared with placebo, including PGIC (percentage reporting symptoms "very much improved" or "much improved", 38.6% vs 26.7% with placebo; P = 0.0078); pain visual analog scale (difference in mean change from baseline, compared with placebo -6.19; P = 0.0013); Fibromyalgia Impact Questionnaire total score (-3.33; P = 0.0144); and quality of sleep score (-0.73; P <0.0001). Treatment was generally well tolerated, with somnolence and dizziness the most frequently reported adverse events.
Conclusions
This trial demonstrated that pregabalin, at doses of up to 450 mg/day, was effective for the symptomatic relief of pain in Japanese patients with fibromyalgia. Pregabalin also improved measures of sleep and functioning and was well tolerated. These data indicate that pregabalin is an effective treatment option for the relief of pain and sleep problems in Japanese patients with fibromyalgia.
Trial Registration
ClinicalTrials.gov: NCT00830167
doi:10.1186/ar4056
PMCID: PMC3580529  PMID: 23062189
7.  Research platform for fibromyalgia in Japan 
Arthritis Research & Therapy  2012;14(Suppl 1):O5.
doi:10.1186/ar3560
PMCID: PMC3332423
12.  Brain perfusion in fibromyalgia patients and its differences between responders and poor responders to gabapentin 
Introduction
The aim of the present study was to determine the brain areas associated with fibromyalgia, and whether pretreatment regional cerebral blood flow (rCBF) can predict response to gabapentin treatment.
Methods
A total of 29 women with fibromyalgia and 10 healthy women (without pain) matched for age were finally enrolled in the study. Technetium-99m ethyl cysteinate dimer single photon emission computed tomography (99mTc-ECD SPECT) was performed in the fibromyalgia patients and controls. A voxel-by-voxel group analysis was performed using Statistic Parametric Mapping 5 (SPM5). After treatment with gabapentin, 16 patients were considered 'responders', with decrease in pain of greater than 50% as evaluated by visual analogue scale (VAS). The remaining 13 patients were considered 'poor responders'.
Results
We observed rCBF abnormalities, compared to control subjects, in fibromyalgia including hypoperfusion in the left culmen and hyperperfusion in the right precentral gyrus, right posterior cingulate, right superior occipital gyrus, right cuneus, left inferior parietal lobule, right middle temporal gyrus, left postcentral gyrus, and left superior parietal lobule. Compared to responders, poor responders exhibited hyperperfusion in the right middle temporal gyrus, left middle frontal gyrus, left superior frontal gyrus, right postcentral gyrus, right precuneus, right cingulate, left middle occipital gyrus, and left declive. The right middle temporal gyrus, left superior frontal gyrus, right precuneus, left middle occipital gyrus, and left declive exhibited high positive likelihood ratios.
Conclusions
The present study revealed brain regions with significant hyperperfusion associated with the default-mode network, in addition to abnormalities in the sensory dimension of pain processing and affective-attentional areas in fibromyalgia patients. Furthermore, hyperperfusion in these areas was strongly predictive of poor response to gabapentin.
doi:10.1186/ar2980
PMCID: PMC2888218  PMID: 20374641
13.  Implication of granulocyte-macrophage colony-stimulating factor induced neutrophil gelatinase-associated lipocalin in pathogenesis of rheumatoid arthritis revealed by proteome analysis 
Introduction
In rheumatoid arthritis (RA), synovial fluid (SF) contains a large number of neutrophils that contribute to the inflammation and destruction of the joints. The SF also contains granulocyte-macrophage colony-stimulating factor (GM-CSF), which sustains viability of neutrophils and activates their functions. Using proteomic surveillance, we here tried to elucidate the effects of GM-CSF on neutrophils.
Methods
Neutrophils stimulated by GM-CSF were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei, and cytoskeleton. Then, proteins were extracted from each fraction and digested by trypsin. The produced peptides were detected using matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS).
Results
We detected 33 peptide peaks whose expression was upregulated by more than 2.5-fold in GM-CSF stimulated neutrophils and identified 11 proteins out of the 33 peptides using MALDI-TOF/TOF MS analysis and protein database searches. One of the identified proteins was neutrophil gelatinase-associated lipocalin (NGAL). We confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. We next addressed possible roles of the increased NGAL in RA. We analysed proteome alteration of synoviocytes from patients with RA by treatment with NGAL in vitro. We found that, out of the detected protein spots (approximately 3,600 protein spots), the intensity of 21 protein spots increased by more than 1.5-fold and the intensity of 10 protein spots decreased by less than 1 to 1.5-fold as a result of the NGAL treatment. Among the 21 increased protein spots, we identified 9 proteins including transitional endoplasmic reticulum ATPase (TERA), cathepsin D, and transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold and 1.6-fold, respectively. Two-dimensional electrophoresis followed by western blot analysis confirmed the upregulation of TERA by the NGAL treatment and, moreover, the western blot analysis showed that the NGAL treatment changed the protein spots caused by post-translational modification of TERA. Furthermore, NGAL cancelled out the proliferative effects of fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) on chondrocytes from a patient with RA and proliferative effect of FGF-2 on chondrosarcoma cells.
Conclusions
Our results indicate that GM-CSF contributes to the pathogenesis of RA through upregulation of NGAL in neutrophils, followed by induction of TERA, cathepsin D and TG2 in synoviocytes. NGAL and the upregulated enzymes may therefore play an important role in RA.
doi:10.1186/ar2587
PMCID: PMC2688233  PMID: 20527084
14.  Identification of novel citrullinated autoantigens of synovium in rheumatoid arthritis using a proteomic approach 
Recently, autoantibodies to some citrullinated autoantigens have been reported to be specific for rheumatoid arthritis (RA). However, an entire profile of and autoimmunity of the citrullinated proteins have been poorly understood. To understand the profile, we examined citrullinated autoantigens by a proteomic approach and further investigated the significance of citrullination in antigenicity of one of the autoantigens. Specifically, we detected citrullinated autoantigens in synovial tissue of a patient with RA by two-dimensional electrophoresis and Western blotting by using pooled sera from five patients with RA and anti-citrulline antibodies. After identifying the detected autoantigens by mass spectrometry, we investigated the contribution of citrullination to autoantigenicity by using a recombinant protein with or without citrullination on one of the identified novel citrullinated autoantigens. As a result, we found 51 citrullinated protein spots. Thirty (58.8%) of these spots were autoantigenic. We identified 13 out of the 30 detected citrullinated autoantigenic proteins. They contained three fibrinogen derivatives and several novel citrullinated autoantigens (for example, asporin and F-actin capping protein α-1 subunit [CapZα-1]). We further analyzed the contribution of citrullination to autoantigenicity in one of the detected citrullinated autoantigens, CapZα-1. As a result, frequencies of autoantibodies to non-citrullinated CapZα-1 were 36.7% in the RA group tested, 10.7% in the osteoarthritis (OA) group, and 6.5% in healthy donors. On the other hand, those to citrullinated CapZα-1 were 53.3% in the RA group, 7.1% in the OA group, and 6.5% in the healthy donors. This shows that autoantigenicity of citrullinated or non-citrullinated CapZα-1 is relevant to RA. The antibody titers to the citrullinated CapZα-1 were significantly higher than those to the non-citrullinated CapZα-1 in 36.7% of patients; however, the other patients showed almost equal antibody titers to both citrullinated and non-citrullinated CapZα-1. Therefore, the autoantibodies would target citrulline-related and/or citrulline-unrelated epitope(s) of CapZα-1. In conclusion, we report a profile of citrullinated autoantigens for the first time. Even though citrullination is closely related to autoantigenicity, citrullination would not always produce autoantigenicity in RA. Citrullinated and non-citrullinated autoantigens/autoepitopes would have different pathological roles in RA.
doi:10.1186/ar2085
PMCID: PMC1794520  PMID: 17125526
16.  Rheumatoid arthritis as a hyper-endoplasmic reticulum-associated degradation disease 
Arthritis Research & Therapy  2005;7(5):181-186.
We introduce Synoviolin as a novel pathogenic factor in rheumatoid arthritis (RA). Experimental studies indicate that this endoplasmic reticulum (ER)-resident E3 ubiquitin ligase has important functions in the ER-associated degradation (ERAD) system, an essential system for ER homeostasis. Overexpression of Synoviolin in mice causes arthropathy with synovial hyperplasia, whereas heterozygous knockdown results in increased apoptosis of synovial cells and resistance to collagen-induced arthritis in mice. On the basis of these experimental data, we propose that excess elimination of unfolded proteins (that is, 'hyper-ERAD') by overexpression of Synoviolin triggers synovial cell overgrowth and hence a worsening of RA. Further analysis of the hyper-ERAD system may permit the complex pathomechanisms of RA to be uncovered.
doi:10.1186/ar1808
PMCID: PMC1257448  PMID: 16207344
17.  Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1α in articular chondrocytes: involvement of HIF-1α in the pathogenesis of osteoarthritis 
Arthritis Research & Therapy  2005;7(4):R904-R914.
Transcription factor hypoxia-inducible factor (HIF)-1 protein accumulates and activates the transcription of genes that are of fundamental importance for oxygen homeostasis – including genes involved in energy metabolism, angiogenesis, vasomotor control, apoptosis, proliferation, and matrix production – under hypoxic conditions. We speculated that HIF-1α may have an important role in chondrocyte viability as a cell survival factor during the progression of osteoarthritis (OA). The expression of HIF-1α mRNA in human OA cartilage samples was analyzed by real-time PCR. We analyzed whether or not the catabolic factors IL-1β and H2O2 induce the expression of HIF-1α in OA chondrocytes under normoxic and hypoxic conditions (O2 <6%). We investigated the levels of energy generation, cartilage matrix production, and apoptosis induction in HIF-1α-deficient chondrocytes under normoxic and hypoxic conditions. In articular cartilages from human OA patients, the expression of HIF-1α mRNA was higher in the degenerated regions than in the intact regions. Both IL-1β and H2O2 accelerated mRNA and protein levels of HIF-1α in cultured chondrocytes. Inhibitors for phosphatidylinositol 3-kinase and p38 kinase caused a significant decrease in catabolic-factor-induced HIF-1α expression. HIF-1α-deficient chondrocytes did not maintain energy generation and cartilage matrix production under both normoxic and hypoxic conditions. Also, HIF-1α-deficient chondrocytes showed an acceleration of catabolic stress-induced apoptosis in vitro. Our findings in human OA cartilage show that HIF-1α expression in OA cartilage is associated with the progression of articular cartilage degeneration. Catabolic-stresses, IL-1β, and oxidative stress induce the expression of HIF-1α in chondrocytes. Our results suggest an important role of stress-induced HIF-1α in the maintenance of chondrocyte viability in OA articular cartilage.
doi:10.1186/ar1765
PMCID: PMC1175045  PMID: 15987493
18.  Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function 
Arthritis Research & Therapy  2005;7(2):R380-R391.
Oxidative stress leads to increased risk for osteoarthritis (OA) but the precise mechanism remains unclear. We undertook this study to clarify the impact of oxidative stress on the progression of OA from the viewpoint of oxygen free radical induced genomic instability, including telomere instability and resulting replicative senescence and dysfunction in human chondrocytes. Human chondrocytes and articular cartilage explants were isolated from knee joints of patients undergoing arthroplastic knee surgery for OA. Oxidative damage and antioxidative capacity in OA cartilage were investigated in donor-matched pairs of intact and degenerated regions of tissue isolated from the same cartilage explants. The results were histologically confirmed by immunohistochemistry for nitrotyrosine, which is considered to be a maker of oxidative damage. Under treatment with reactive oxygen species (ROS; 0.1 μmol/l H2O2) or an antioxidative agent (ascorbic acid: 100.0 μmol/l), cellular replicative potential, telomere instability and production of glycosaminoglycan (GAG) were assessed in cultured chondrocytes. In tissue cultures of articular cartilage explants, the presence of oxidative damage, chondrocyte telomere length and loss of GAG to the medium were analyzed in the presence or absence of ROS or ascorbic acid. Lower antioxidative capacity and stronger staining of nitrotyrosine were observed in the degenerating regions of OA cartilages as compared with the intact regions from same explants. Immunostaining for nitrotyrosine correlated with the severity of histological changes to OA cartilage, suggesting a correlation between oxidative damage and articular cartilage degeneration. During continuous culture of chondrocytes, telomere length, replicative capacity and GAG production were decreased by treatment with ROS. In contrast, treatment with an antioxidative agent resulted in a tendency to elongate telomere length and replicative lifespan in cultured chondrocytes. In tissue cultures of cartilage explants, nitrotyrosine staining, chondrocyte telomere length and GAG remaining in the cartilage tissue were lower in ROS-treated cartilages than in control groups, whereas the antioxidative agent treated group exhibited a tendency to maintain the chondrocyte telomere length and proteoglycan remaining in the cartilage explants, suggesting that oxidative stress induces chondrocyte telomere instability and catabolic changes in cartilage matrix structure and composition. Our findings clearly show that the presence of oxidative stress induces telomere genomic instability, replicative senescence and dysfunction of chondrocytes in OA cartilage, suggesting that oxidative stress, leading to chondrocyte senescence and cartilage ageing, might be responsible for the development of OA. New efforts to prevent the development and progression of OA may include strategies and interventions aimed at reducing oxidative damage in articular cartilage.
doi:10.1186/ar1499
PMCID: PMC1065334  PMID: 15743486
cellular senescence; chondrocyte; osteoarthritis; oxidative stress; telomere
19.  Autoimmune response in cartilage-delivered peptides in a patient with osteoarthritis 
Whatever the initiating factor of osteoarthritis (OA), the process ultimately unmasks the immunogenic determinants of chondrocytes, proteoglycans and collagens, which then triggers autoimmune reactions. Although the precise mechanism of the immune responses in the pathogenesis of OA requires further investigation, here I postulate that the presence of autoimmunity to cartilage components has an important role in the process of cartilage degradation in OA. Current studies strongly suggest that a immunoregulatory therapeutic strategy should be established.
doi:10.1186/ar1025
PMCID: PMC400416  PMID: 14979925
cartilage; chemokines; components; immunological intervention; osteoarthritis
20.  Autoantibodies to low-density-lipoprotein-receptor-related protein 2 (LRP2) in systemic autoimmune diseases 
Arthritis Research & Therapy  2003;5(3):R174-R180.
We previously reported that autoantibodies (autoAbs) to the main epitope on CD69 reacted to its homologous amino acid sequence in low-density-lipoprotein-receptor-related protein 2 (LPR2), a multiligand receptor for protein reabsorption. In this study, we have investigated the prevalence, autoepitope distribution, and clinical significance of the autoAbs to LRP2 in patients with systemic autoimmune diseases. Using six recombinant proteins (F2–F7) for LRP2 and one for CD69, we detected autoAbs to LRP2 in sera of patients with rheumatoid arthritis (RA), systemic lupus erythematosus, Behçet's disease, systemic sclerosis, and osteoarthritis and then mapped autoepitopes by Western blotting. The autoAbs to LRP2 were detected in 87% of the patients with rheumatoid arthritis, 40% of those with systemic lupus erythematosus, 35% of those with systemic sclerosis, 15% of those with osteoarthritis, and 3% of those with Behçet's disease. Multiple epitopes on LRP2 were recognized by most of the anti-LRP2+ serum samples. All of the tested anti-CD69 autoAb+ samples reacted to LRP2-F3 containing the homologous sequence to the main epitope of CD69; however, only 38% of the anti-LRP2-F3+ samples reacted to CD69. Clinically, the existence of the autoAbs to LRP2-F4, -F5, and -F6 correlated with the presence of proteinuria in RA. This study revealed that LRP2 is a major autoantigen in RA. The autoAbs to LRP2 are probably produced by the antigen-driven mechanism and the autoimmunity to LRP2 may spread to include CD69. The anti-LRP2 autoAbs may play pathological roles by inhibiting the reabsorbing function of LRP2.
doi:10.1186/ar754
PMCID: PMC165049  PMID: 12723989
autoantibody; CD69; LRP2; proteinuria

Results 1-20 (20)