PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (424)
 

Clipboard (0)
None
Journals
Year of Publication
more »
Document Types
2.  Circadian rhythms in rheumatology - a glucocorticoid perspective 
Arthritis Research & Therapy  2014;16(Suppl 2):S3.
The hypothalamic-pituitary-adrenal (HPA) axis plays an important role in regulating and controlling immune responses. Dysfunction of the HPA axis has been implicated in the pathogenesis of rheumatoid arthritis (RA) and other rheumatic diseases. The impact of glucocorticoid (GC) therapy on HPA axis function also remains a matter of concern, particularly for longer treatment duration. Knowledge of circadian rhythms and the influence of GC in rheumatology is important: on the one hand we aim for optimal treatment of the daily undulating inflammatory symptoms, for example morning stiffness and swelling; on the other, we wish to disturb the HPA axis as little as possible. This review describes circadian rhythms in RA and other chronic inflammatory diseases, dysfunction of the HPA axis in RA and other rheumatic diseases and the recent concept of the hepato-hypothalamic-pituitary-adrenal-renal axis, the problem of adrenal suppression by GC therapy and how it can be avoided, and evidence that chronotherapy with modified release prednisone effective at 02:00 a.m. can inhibit proinflammatory sequelae of nocturnal inflammation better compared with GC administration in the morning but does not increase the risk of HPA axis insufficiency in RA.
doi:10.1186/ar4687
PMCID: PMC4249493  PMID: 25608777
3.  The supplementary therapeutic DMARD role of low-dose glucocorticoids in rheumatoid arthritis 
Arthritis Research & Therapy  2014;16(Suppl 2):S1.
The management of rheumatoid arthritis (RA) is primarily based on the use of disease-modifying antirheumatic drugs (DMARDs), mainly comprising synthetic chemical compounds (that is, methotrexate or leflunomide) and biological agents (tumor necrosis factor inhibitors or abatacept). On the other hand, glucocorticoids (GCs), used for decades in the treatment of RA, are effective in relieving signs and symptoms of the disease, but also interfere with radiographic progression, either as monotherapy or in combination with conventional synthetic DMARDs. GCs exert most of their biological effects through a genomic action, using the cytosolic GC receptor and then interacting with the target genes within target cells that can result in increased expression of regulatory - including anti-inflammatory - proteins (transactivation) or decreased production of proinflammatory proteins (transrepression). An inadequate secretion of GCs from the adrenal gland, in relation to stress and inflammation, seems to play an important role in the pathogenesis and disease progression of RA. At present there is clear evidence that GC therapy, especially long-term low-dose treatment, slows radiographic progression by at least 50% when given to patients with early RA, hence satisfying the conventional definition of a DMARD. In addition, long-term follow-up studies suggest that RA treatment strategies which include GC therapy may favorably alter the disease course even after their discontinuation. Finally, a low-dose, modified night-release formulation of prednisone, although administered in the evening (replacement therapy), has been developed to counteract the circadian (night) rise in proinflammatory cytokine levels that contributes to disease activity, and might represent the way to further optimize the DMARD activity exerted by GCs in RA.
doi:10.1186/ar4685
PMCID: PMC4249490  PMID: 25608624
4.  The value of glucocorticoid co-therapy in different rheumatic diseases - positive and adverse effects 
Arthritis Research & Therapy  2014;16(Suppl 2):S2.
Glucocorticoids play a pivotal role in the management of many inflammatory rheumatic diseases. The therapeutic effects range from pain relief in arthritides, to disease-modifying effects in early rheumatoid arthritis, and to strong immunosuppressive actions in vasculitides and systemic lupus erythematosus. There are multiple indications that adverse effects are more frequent with the longer use of glucocorticoids and use of higher dosages, but high-quality data on the occurrence of adverse effects are scarce especially for dosages above 10 mg prednisone daily. The underlying rheumatic disease, disease activity, risk factors and individual responsiveness of the patient should guide treatment decisions. Monitoring for adverse effects should also be tailored to the patient. Continuously balancing the benefits and risks of glucocorticoid therapy is recommended. There is an ongoing quest for new drugs with glucocorticoid actions without the potential to cause harmful effects, such as selective glucocorticoid receptor agonists, but the application of a new compound in clinical practice will probably not occur within the next few years. In the meantime, basic research on glucocorticoid effects and detailed reports on therapeutic efficacy and occurrence of adverse effects will be valuable in weighing benefits and risks in clinical practice.
doi:10.1186/ar4686
PMCID: PMC4249491  PMID: 25608693
5.  Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases 
Arthritis Research & Therapy  2014;16(Suppl 2):S4.
Insulin resistance (IR) is a general phenomenon of many physiological states, disease states, and diseases. IR has been described in diabetes mellitus, obesity, infection, sepsis, trauma, painful states such as postoperative pain and migraine, schizophrenia, major depression, chronic mental stress, and others. In arthritis, abnormalities of glucose homeostasis were described in 1920; and in 1950 combined glucose and insulin tests unmistakably demonstrated IR. The phenomenon is now described in rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatica, and others. In chronic inflammatory diseases, cytokine-neutralizing strategies normalize insulin sensitivity. This paper delineates that IR is either based on inflammatory factors (activation of the immune/ repair system) or on the brain (mental activation via stress axes). Due to the selfishness of the immune system and the selfishness of the brain, both can induce IR independent of each other. Consequently, the immune system can block the brain (for example, by sickness behavior) and the brain can block the immune system (for example, stress-induced immune system alterations). Based on considerations of evolutionary medicine, it is discussed that obesity per se is not a disease. Obesity-related IR depends on provoking factors from either the immune system or the brain. Chronic inflammation and/or stress axis activation are thus needed for obesity-related IR. Due to redundant pathways in stimulating IR, a simple one factor-neutralizing strategy might help in chronic inflammatory diseases (inflammation is the key), but not in obesity-related IR. The new considerations towards IR are interrelated to the published theories of IR (thrifty genotype, thrifty phenotype, and others).
doi:10.1186/ar4688
PMCID: PMC4249495  PMID: 25608958
6.  Antiphospholipid syndrome in 2014: more clinical manifestations, novel pathogenic players and emerging biomarkers 
The clinical spectrum of the anti-phospholipid syndrome (APS) is not limited to vascular thrombosis or miscarriages but includes additional manifestations that cannot be explained solely by a thrombophilic state. Anti-cardiolipin, anti-beta2 glycoprotein I (anti-β2GPI) and lupus anticoagulant (LA) assays are not only the formal diagnostic and classification laboratory tools but also parameters to stratify the risk to develop the clinical manifestations of the syndrome. In particular, anti-β2GPI antibodies reacting with an immunodominant epitope on domain I of the molecule were reported as the prevalent specificity in APS patients, correlating with a more aggressive clinical picture. Several laboratory assays to improve the diagnostic and predictive power of the standard tests have been proposed. Plates coated with the phosphatidylserine-prothrombin complex for detecting antibodies represent a promising laboratory tool correlating with LA and with clinical manifestations. Anti-phospholipid antibodies can be found in patients with full-blown APS, in those with thrombotic events or obstetric complications only or in asymptomatic carriers. An inflammatory second hit is required to increase the presence of β2GPI in vascular tissues, eventually triggering thrombosis. Post-transcriptional modifications of circulating β2GPI, different epitope specificities or diverse anti-β2GPI antibody-induced cell signaling have all been suggested to affect the clinical manifestations and/or to modulate their occurrence.
doi:10.1186/ar4549
PMCID: PMC4060447  PMID: 25166960
7.  Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques 
Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue, cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine, and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor κB and its ligand, chemokine receptors, vascular cell adhesion molecule-1, αVβ3 integrin, P2X7 receptor, suppression of tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein.
doi:10.1186/ar4542
PMCID: PMC4061725  PMID: 25099015
8.  Meniscal pathology - the evidence for treatment 
Whilst arthroscopic surgery for the treatment of meniscal tears is the most commonly performed orthopaedic surgery, meniscal tears at the knee are frequently identified on magnetic resonance imaging in adults with and without knee pain. The evidence for arthroscopic treatment of meniscal tears is controversial and lacks a supporting evidence base; it may be no more efficacious than conservative therapies. Surgical approaches to the treatment of meniscal pathology can be broadly categorised into those in which partial menisectomy or repair are performed. This review highlights that the major factor determining the choice of operative approach is age: meniscal repair is performed exclusively on younger populations, while older populations are subject to partial menisectomy procedures. This is probably because the meniscus is less amenable to repair in the older population where other degenerative changes co-exist. In middle-aged to older adults, arthroscopic partial menisectomy (APM) may treat the meniscus tear, but does not address the degenerative whole organ disease of knee osteoarthritis. Thus far, there is no convincing evidence that operative approaches are superior to conservative measures as the first-line treatment of older people with knee pain and meniscal tears. However, in two randomised controlled trials (RCTs) approximately one-third of subjects in the exercise groups had persisting knee pain with some evidence of improvement following APM, although the characteristics of this subgroup are unclear. From the available data, a first-line trial of conservative therapy, which includes weight loss, is recommended for the treatment of degenerative meniscal tears in older adults. The exception to this may be when mechanical symptoms, such as knee locking, predominate. Although requiring corroboration by RCTs, there is accumulating evidence from cohort studies and case series that meniscal repair rather than APM may improve function and reduce the long-term risk of knee osteoarthritis in young adults. There is no clear evidence from RCTs that one surgical method of meniscal repair is superior to another.
doi:10.1186/ar4515
PMCID: PMC4060175  PMID: 25167471
9.  High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential 
Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis.
doi:10.1186/ar4506
PMCID: PMC4061724  PMID: 24946278
10.  Biology of platelet-rich plasma and its clinical application in cartilage repair 
Platelet-rich plasma (PRP) is an autologous concentrated cocktail of growth factors and inflammatory mediators, and has been considered to be potentially effective for cartilage repair. In addition, the fibrinogen in PRP may be activated to form a fibrin matrix to fill cartilage lesions, fulfilling the initial requirements of physiological wound healing. The anabolic, anti-inflammatory and scaffolding effects of PRP based on laboratory investigations, animal studies, and clinical trials are reviewed here. In vitro, PRP is found to stimulate cell proliferation and cartilaginous matrix production by chondrocytes and adult mesenchymal stem cells (MSCs), enhance matrix secretion by synoviocytes, mitigate IL-1β-induced inflammation, and provide a favorable substrate for MSCs. In preclinical studies, PRP has been used either as a gel to fill cartilage defects with variable results, or to slow the progression of arthritis in animal models with positive outcomes. Findings from current clinical trials suggest that PRP may have the potential to fill cartilage defects to enhance cartilage repair, attenuate symptoms of osteoarthritis and improve joint function, with an acceptable safety profile. Although current evidence appears to favor PRP over hyaluronan for the treatment of osteoarthritis, the efficacy of PRP therapy remains unpredictable owing to the highly heterogeneous nature of reported studies and the variable composition of the PRP preparations. Future studies are critical to elucidate the functional activity of individual PRP components in modulating specific pathogenic mechanisms.
doi:10.1186/ar4493
PMCID: PMC3978832  PMID: 25164150
11.  Interaction of the endocrine system with inflammation: a function of energy and volume regulation 
During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle, liver, and bone) are highly important because these factors are needed by an energy-consuming immune system in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol (breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention), noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin II (induce insulin resistance and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on, leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing changes contribute to increased mortality in chronic inflammatory diseases.
doi:10.1186/ar4484
PMCID: PMC3978663  PMID: 24524669
12.  Mechanisms of endothelial dysfunction in rheumatoid arthritis: lessons from animal studies 
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by articular and extra-articular manifestations involving cardiovascular diseases (CVDs), which account for 30% to 50% of all deaths. In patients with RA, atherosclerosis lesions occur earlier and have a more rapid evolution than in the general population. Beyond mortality, the impact of CVD on quality of life, combined with the associated increase in health-care costs, renders CVD in RA a major public health problem. Recent studies showed that patients with RA are characterized by the presence of endothelial dysfunction (ED), which is recognized as a key event in the development of atherosclerosis. By definition, ED is a functional and reversible alteration of endothelial cells, leading to a shift of the actions of the endothelium toward reduced vasodilation, proinflammatory state and proliferative and prothrombotic properties. Although the improvement of endothelial function is becoming an important element of the global management of patients with RA, the mechanistic determinants of ED in RA are still poorly understood. Animal models of RA provide the unique opportunity to unravel the pathophysiological features of ED in RA. The present review summarizes the available data on mechanisms underlying ED in animal models of RA and proposes attractive prospects in order to discover novel therapeutic strategies of RA-associated ED.
doi:10.1186/ar4450
PMCID: PMC3978571  PMID: 24457026
13.  Review of pharmacological therapies in fibromyalgia syndrome 
This review addresses the current status of drug therapy for the management of fibromyalgia syndrome (FMS) and is based on interdisciplinary FMS management guidelines, meta-analyses of drug trial data, and observational studies. In the absence of a single gold-standard medication, patients are treated with a variety of drugs from different categories, often with limited evidence. Drug therapy is not mandatory for the management of FMS. Pregabalin, duloxetine, milnacipran, and amitriptyline are the current first-line prescribed agents but have had a mostly modest effect. With only a minority of patients expected to experience substantial benefit, most will discontinue therapy because of either a lack of efficacy or tolerability problems. Many drug treatments have undergone limited study and have had negative results. It is unlikely that these failed pilot trials will undergo future study. However, medications, though imperfect, will continue to be a component of treatment strategy for these patients. Both the potential for medication therapy to relieve symptoms and the potential to cause harm should be carefully considered in their administration.
doi:10.1186/ar4441
PMCID: PMC3979124  PMID: 24433463
14.  An emerging player in knee osteoarthritis: the infrapatellar fat pad 
The role of inflammation in the development, progression, and clinical features of osteoarthritis has become an area of intense research in recent years. This led to the recognition of synovitis as an important source of inflammation in the joint and indicated that synovitis is intimately associated with pain and osteoarthritis progression. In this review, we discuss another emerging source of inflammation that could play a role in disease development/progression: the infrapatellar fat pad (IFP). The aim of this review is to offer a comprehensive view of the pathology of IFP as obtained from magnetic resonance studies, along with its characterization at both the cellular and the molecular level. Furthermore, we discuss the possible function of this organ in the pathological processes in the knee by summarizing the knowledge regarding the interactions between IFP and other joint tissues and discussing the pro- versus anti-inflammatory functions this tissue could have. We hope that this review will offer an overview of all published data regarding the IFP and will indicate novel directions for future research.
doi:10.1186/ar4422
PMCID: PMC3979009  PMID: 24367915
15.  Psoriatic arthritis: recent progress in pathophysiology and drug development 
Psoriatic arthritis (PsA) is the second most common inflammatory arthropathy, after rheumatoid arthritis diagnosis, in early arthritis clinics. Most patients have established psoriasis, often for years, prior to the onset of joint pain and swelling; in addition, associated features of nail disease, dactylitis, enthesitis, spondylitis or uveitis may be present. Psoriasis may not be immediately apparent, as small or patchy lesions may occur in the scalp or perineum. PsA presents as a symmetrical polyarthritis, similar to rheumatoid arthritis, or an asymmetrical oligoarthritis with a predilection for the distal interphalangeal joints. Spinal involvement is similar, although not identical, to ankylosing spondylitis. Joint damage occurs early; up to 50% of PsA patients have an 11% annual erosion rate in the first 2 years of disease duration, suggesting it is not a benign condition. There have been significant advances in our understanding of PsA pathogenesis in recent years, in the areas of genetics and molecular biology, implicating both the innate and the adaptive immune systems. This has lead to the introduction of evidence-based targeted therapy, primarily with tumour necrosis factor inhibitor (TNFi) agents. Therapy with disease-modifying anti-rheumatic drugs, such as methotrexate and leflunomide, remains the first-choice therapeutic intervention, even though there are few randomised controlled trials with these agents. In contrast, a number of successful studies of TNFi agents demonstrate excellent efficacy, in combination with methotrexate, and several novel agents are currently in development for the treatment of PsA.
doi:10.1186/ar4414
PMCID: PMC4061722  PMID: 24611179
16.  Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes 
Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.
doi:10.1186/ar4405
PMCID: PMC4061721  PMID: 24321104
17.  Animal models of fibromyalgia 
Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles.
doi:10.1186/ar4402
PMCID: PMC3979153  PMID: 24314231
18.  How to build an inducible cartilage-specific transgenic mouse 
Transgenic mice are used to study the roles of specific proteins in an intact living system. Use of transgenic mice to study processes in cartilage, however, poses some challenges. First of all, many factors involved in cartilage homeostasis and disease are also crucial factors in embryogenesis. Therefore, meddling with these factors often leads to death before birth, and mice who do survive cannot be considered normal. The build-up of cartilage in these mice is altered, making it nearly impossible to truly interpret the role of a protein in adult cartilage function. An elegant way to overcome these limitations is to make transgenic mice time- and tissue-specific, thereby omitting side-effects in tissues other than cartilage and during embryology. This review discusses the potential building blocks for making an inducible cartilage-specific transgenic mouse. We review which promoters can be used to gain chondrocyte-specificity - all chondrocytes or a specific subset thereof - as well as different systems that can be used to enable inducibility of a transgene.
doi:10.1186/ar4573
PMCID: PMC4060449  PMID: 25166474
19.  Beyond pain in fibromyalgia: insights into the symptom of fatigue 
Fatigue is a disabling, multifaceted symptom that is highly prevalent and stubbornly persistent. Although fatigue is a frequent complaint among patients with fibromyalgia, it has not received the same attention as pain. Reasons for this include lack of standardized nomenclature to communicate about fatigue, lack of evidence-based guidelines for fatigue assessment, and a deficiency in effective treatment strategies. Fatigue does not occur in isolation; rather, it is present concurrently in varying severity with other fibromyalgia symptoms such as chronic widespread pain, unrefreshing sleep, anxiety, depression, cognitive difficulties, and so on. Survey-based and preliminary mechanistic studies indicate that multiple symptoms feed into fatigue and it may be associated with a variety of physiological mechanisms. Therefore, fatigue assessment in clinical and research settings must consider this multi-dimensionality. While no clinical trial to date has specifically targeted fatigue, randomized controlled trials, systematic reviews, and meta-analyses indicate that treatment modalities studied in the context of other fibromyalgia symptoms could also improve fatigue. The Outcome Measures in Rheumatology (OMERACT) Fibromyalgia Working Group and the Patient Reported Outcomes Measurement Information System (PROMIS) have been instrumental in propelling the study of fatigue in fibromyalgia to the forefront. The ongoing efforts by PROMIS to develop a brief fibromyalgia-specific fatigue measure for use in clinical and research settings will help define fatigue, allow for better assessment, and advance our understanding of fatigue.
doi:10.1186/ar4395
PMCID: PMC3978642  PMID: 24289848
20.  Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy 
Intervertebral disc degeneration (IDD) is a common orthopedic disease associated with mechanical changes that may result in significant pain. Current treatments for IDD mainly depend on conservative therapies and spinal surgeries that are only able to relieve the symptoms but do not address the cause of the degeneration and even accelerate the degeneration of adjacent segments. This has prompted research to improve our understanding of the biology of intervertebral disc healing and into methods to enhance the regenerative process. Recently, biological therapies, including active substances, gene therapy and tissue engineering based on certain cells, have been attracting more attention in the field of intervertebral disc repair and regeneration. Early selection of suitable biological treatment is an ideal way to prevent or even reverse the progressive trend of IDD. Growth factors have been enjoying more popularity in the field of regeneration of IDD and many have been proved to be effective in reversing the degenerative trend of the intervertebral disc. Identification of these growth factors has led to strategies to deliver platelet-derived factors to the intervertebral disc for regeneration. Platelet-rich plasma (PRP) is the latest technique to be evaluated for promoting intervertebral disc healing. Activation of the PRP leads to the release of growth factors from the α-granules in the platelet cytoplasm. These growth factors have been associated with the initiation of a healing cascade that leads to cellular chemotaxis, angiogenesis, synthesis of collagen matrix, and cell proliferation. This review describes the current understanding of IDD and related biological therapeutic strategies, especially the promising prospects of PRP treatment. Future limitations and perspectives of PRP therapy for IDD are also discussed.
doi:10.1186/ar4353
PMCID: PMC3978730  PMID: 24165687
21.  Role of neutrophils in systemic autoimmune diseases 
Neutrophils have emerged as important regulators of innate and adaptive immune responses. Recent evidence indicates that neutrophils display marked abnormalities in phenotype and function in various systemic autoimmune diseases, and may play a central role in initiation and perpetuation of aberrant immune responses and organ damage in these conditions. This review discusses the putative roles that neutrophils and aberrant neutrophil cell death play in the pathogenesis of various systemic autoimmune diseases, including systemic lupus erythematosus, small vessel vasculitis and rheumatoid arthritis.
doi:10.1186/ar4325
PMCID: PMC3978765  PMID: 24286137
22.  Update on differences between childhood-onset and adult-onset systemic lupus erythematosus 
Systemic lupus erythematosus (SLE) is a complex autoimmune disease and occurs worldwide in both children and adults. The estimated annual incidence among children is 2.22/100,000 and among adults is 23.2/100,000 in the United States. There is increasing understanding about differences in disease manifestations, medication use, and disease severity between those with childhood-onset SLE as compared with adult-onset SLE. Children have a more fulminant disease onset and course than adults with SLE, resulting in two to three times higher mortality. In future years, we anticipate more insight into the genetics between childhood-onset SLE and adult-onset SLE to help delineate the best therapies for both subsets of patients.
doi:10.1186/ar4256
PMCID: PMC3978647  PMID: 23998441
childhood-onset systemic lupus erythematosus; systemic lupus erythematosus; children; lupus; adults; adolescents
23.  Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage 
Arthritis Research & Therapy  2013;15(Suppl 3):S3.
NSAIDs are among the most commonly used drugs worldwide and their beneficial therapeutic properties are thoroughly accepted. However, they are also associated with gastrointestinal (GI) adverse events. NSAIDs can damage the whole GI tract including a wide spectrum of lesions. About 1 to 2% of NSAID users experienced a serious GI complication during treatment. The relative risk of upper GI complications among NSAID users depends on the presence of different risk factors, including older age (>65 years), history of complicated peptic ulcer, and concomitant aspirin or anticoagulant use, in addition to the type and dose of NSAID. Some authors recently reported a decreasing trend in hospitalizations due to upper GI complications and a significant increase in those from the lower GI tract, causing the rates of these two types of GI complications to converge. NSAID-induced enteropathy has gained much attention in the last few years and an increasing number of reports have been published on this issue. Current evidence suggests that NSAIDs increase the risk of lower GI bleeding and perforation to a similar extent as that seen in the upper GI tract. Selective cyclooxygenase-2 inhibitors have the same beneficial effects as nonselective NSAIDs but with less GI toxicity in the upper GI tract and probably in the lower GI tract. Overall, mortality due to these complications has also decreased, but the in-hospital case fatality for upper and lower GI complication events has remained constant despite the new therapeutic and prevention strategies.
doi:10.1186/ar4175
PMCID: PMC3890944  PMID: 24267289
24.  The use of H2 antagonists in treating and preventing NSAID-induced mucosal damage 
Arthritis Research & Therapy  2013;15(Suppl 3):S6.
Pain affects the quality of life for millions of individuals and is a major reason for healthcare utilization. As populations age, medical personnel will need to manage more and more patients suffering from pain associated with degenerative and inflammatory musculoskeletal disorders. Nonsteroidal anti-inflammatory drugs (NSAIDs) are an effective treatment for both acute and chronic musculoskeletal pain; however, their use is associated with potentially significant gastrointestinal (GI) toxicity. Guidelines suggest various strategies to prevent problems in those at risk for NSAID-associated GI complications. In this article, we review the data supporting one such strategy - the use of histamine type-2 receptor antagonists (H2RAs) - for the prevention of GI adverse events in NSAID users. Older studies suggest that high-dose H2RAs are effective in preventing upper GI ulcers and dyspepsia. This suggestion was recently confirmed during clinical trials with a new ibuprofen/famotidine combination that reduced the risk of ulcers by 50% compared with ibuprofen alone.
doi:10.1186/ar4178
PMCID: PMC3890976  PMID: 24267478
25.  The use of proton pump inhibitors in treating and preventing NSAID-induced mucosal damage 
Arthritis Research & Therapy  2013;15(Suppl 3):S5.
NSAIDs are prescribed widely but have rare serious gastrointestinal side effects. More recently, adverse cardiovascular effects of these drugs have also been recognized, leading to the withdrawal of some agents and continuing uncertainty about the best approach for patients requiring NSAID therapy. Proton pump inhibitors (PPIs) provide potent and long-lasting inhibition of gastric acid secretion and have proven efficacy in healing NSAID-associated ulcers, including those with continued exposure to NSAIDs. PPIs have also shown efficacy in reducing the risk of ulcerations due to NSAID use compared with NSAIDs alone in randomized controlled trials (RCTs) where endoscopic ulcers are used as the primary endpoint, albeit a surrogate marker for clinical ulcers and complications. Large RCT outcome trials comparing patients exposed to NSAIDs with and without PPI co-therapy have not been performed, but adequately powered RCTs in high-risk patients demonstrate that PPI + nonselective NSAID provides similar rates of symptomatic ulcer recurrence rates as the use of a cyclooxygenase (COX)-2 selective inhibitor. A RCT in high-risk patients with previous ulcer complications supports the additive bene3 t of two risk-reducing strategies, as ulcer complication recurrence was eliminated in high-risk patients who were given a COX-2 selective agent with a PPI. Helicobacter pylori, an independent risk factor for ulcers, should be sought out and eradicated in patients at increased gastrointestinal risk, typically those with an ulcer history. Following H. pylori eradication, however, patients remain at risk and co-therapy with a PPI is recommended. NSAID medication selection should consider both the individual patients' gastrointestinal and cardiovascular risks.
doi:10.1186/ar4177
PMCID: PMC3891010  PMID: 24267413

Results 1-25 (424)