PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
1.  22nd European Workshop for Rheumatology Research, Leiden, The Netherlands, 28 February–3 March 2002 
Arthritis Research  2002;4(4):276-279.
The European Workshop for Rheumatology Research met this year in Leiden, The Netherlands. The Workshop provided a platform to feast on new technologies and how they have taken research programmes forward. While there will be the inevitable delay during which mechanisms are devised for analysing the huge amount of information generated by these technologies, there is a lot already to look forward to. Highlights included genomic, reverse genomic and proteomic approaches to understanding disease pathogenesis and to identifying new therapeutic targets. Opportunities for exploring whether pharmacogenomics has a place in the clinic are now a reality, and phage display technology has been applied to in vivo arthritis models to identify human synovial microvascular 'post codes'.
doi:10.1186/ar418
PMCID: PMC128934  PMID: 12106499
diagnostics; inflammation; prognostics; research; workshop
2.  Cytokine mRNA and protein expression in primary-culture and repeated-passage synovial fibroblasts from patients with rheumatoid arthritis 
Arthritis Research  2001;4(2):117-125.
Constitutive mRNA expression and secretion of proinflammatory and anti-inflammatory cytokines was comparatively analyzed in rheumatoid arthritis (RA) synovial fibroblasts (SFB), isolated from primary culture or derived by repeated passage; normal-skin fibroblasts were used as controls. First-passage RA-SFB (n = 3) secreted large amounts of IL-6 (15,800 ± 2,110 pg/ml; mean ± SEM), but only limited amounts of tumor necrosis factor (TNF)-α (22.1 ± 1.1 pg/ml) or IL-10 (35.7 ± 34.2 pg/ml; only one of three samples was positive). IL-1β, IL-15, and IL-18 were not detectable at the protein level and showed very low mRNA levels by semiquantitative RT-PCR. In repeated-passage RA-SFB (tenth passage), protein secretion was significantly lower for IL-6 (one-twentieth of the initial level) and TNF-α (two-thirds), and markedly reduced for IL-10 (one-quarter, with only one of three samples positive). While the decrease of IL-10 protein from first to tenth passage was paralleled by a corresponding decrease of mRNA, the relative mRNA levels for IL-6 and TNF-α were actually increased (20-fold and 300-fold, respectively), indicating post-transcriptional and/or post-translational regulation of these cytokines. Due to highly variable levels among individual patients, however, no significant differences were observed for any cytokine mRNA between primary-culture and repeated-passage RA-SFB (ninth passage). Likewise, no significant differences were detectable between RA-SFB and normal-skin fibroblasts (primary-culture and repeated-passage). By producing high amounts of IL-6 and limited amounts of TNF-α, RA-SFB may contribute to the (im)balance of proinflammatory and anti-inflammatory cytokines in the inflamed joint.
PMCID: PMC83845  PMID: 11879547
cytokines; inflammation; mRNA; rheumatoid arthritis; synovial fibroblasts
3.  Rheumatoid synovial CD4+ T cells exhibit a reduced capacity to differentiate into IL-4-producing T-helper-2 effector cells 
Arthritis Research  2000;3(1):54-64.
CD4+ memory T cells (Tm) from rheumatoid arthritis peripheral blood (RAPB) or peripheral blood from normal donors produced IL-2, whereas fewer cells secreted IFN-γ or IL-4 after a brief stimulation. RAPB Tm contained significantly more IFN-γ producers than normal cells. Many rheumatoid arthritis (RA) synovial Tm produced IFN-γ alone (40%) and fewer cells produced IL-2 or IL-4. An in vitro model was employed to generate polarized T-helper (Th) effectors. Normal and RAPB Tm differentiated into both IFN-γ- and IL-4-producing effectors. RA synovial fluid (RASF) Tm demonstrated defective responsiveness, exhibiting diminished differentiation of IL-4 effectors, whereas RA synovial tissue (RAST) Tm exhibited defective generation of IFN-γ and IL-4 producers.
PMCID: PMC17825  PMID: 11178127
CD4+ T-helper cells; cytokines; rheumatoid arthritis
4.  Where is biological therapy going? 
Arthritis Research  2000;2(5):337-341.
The substantial progress in our understanding of molecular and cellular biology has allowed us to design biological therapeutics ('biologicals') with defined targets and effector functions. These biologicals have greatly contributed to our current knowledge of pathogenetic mechanisms in autoimmune diseases. However, although some of the biologicals have been extremely successful in treating the symptoms of chronic inflammation, biological therapy has not yet met the expectations of permanently silencing the chonic immune response. In this commentary we discuss current concepts and future directions of biological therapy, and the potential usefulness of biologicals as a treatment of human autoimmune diseases in appropriate critical applications with the use of suitably designed agents.
doi:10.1186/ar108
PMCID: PMC130132  PMID: 11094444
biologicals; cytokines; monoclonal antibodies; rheumatoid arthritis; treatment

Results 1-6 (6)