PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Does the Iowa Gambling Task Measure Executive Function? 
The Iowa Gambling Task (IGT) is assumed to measure executive functioning, but this has not been empirically tested by means of both convergent and discriminant validity. We used structural equation modeling (SEM) to test whether the IGT is an executive function (EF) task (convergent validity) and whether it is not related to other neuropsychological domains (discriminant validity). Healthy community-dwelling participants (N = 214) completed a comprehensive neuropsychological battery. We analyzed the conventional IGT metric and three alternative metrics based on the overall difference of advantageous minus disadvantageous choices made during the last 60 IGT responses and advantageous minus disadvantageous choices based on two specific decks of cards (D minus A). An a priori six-factor hierarchical model of neuropsychological functioning was confirmed with SEM. Attention and processing speed were grouped as “non-associative” factors. Fluency, executive functioning, visual learning/memory, and verbal learning/memory were grouped as higher-level “associative” factors. Of the non-associative factors, attention, but not speed, predicted IGT performance. When each associative factor was entered along with attention, only EF improved the model fit and that was only for metrics based on trials 41–100. SEM indicates metrics based on trails 1–100 are influenced by attention, and metrics based on trails 41–100 are influenced by attention and EF. Its associative strength with attention is twice that of EF. Conceptually, the IGT is a multi-trait task involving novel problem-solving and attentional domains to a greater extent, and executive functioning to a lesser extent.
doi:10.1093/arclin/acr082
PMCID: PMC3254153  PMID: 22015855
Iowa Gambling Task; Decision-making; Executive function; Neuropsychological evaluation; Structural equation modeling
2.  Cranial Volume, Mild Cognitive Deficits, and Functional Limitations Associated with Diabetes in a Community Sample 
Diabetes is associated with dementia in older adults, but it remains unclear whether nondemented adults with type 2 diabetes show subtle abnormalities across cognition, neuroanatomy, and everyday functioning. Using the Aging, Brain Imaging, and Cognition study sample of 301 community-dwelling, middle-aged and older adults, we conducted a secondary analysis on 28 participants with and 150 participants without diabetes. We analyzed brain magnetic resonance imaging data, cognitive test performance, and informant ratings of personal and instrumental activities of daily living (PADL/IADL). Relative to controls, participants with diabetes had lower brain-to-intracranial volume ratios (69.3 ± 4.5% vs. 71.7 ± 4.6%; p < .02), and performed more poorly on measures of working memory, processing speed, fluency, and crystallized intelligence (all p <.05). Decrements in working memory and processing speed were associated with IADL limitations (p < .01). Nondemented adults with diabetes exhibit neuroanatomic and cognitive abnormalities. Their cognitive deficits correlate with everyday functional limitations.
doi:10.1093/arclin/acp091
PMCID: PMC2809552  PMID: 19942595
Diabetes; Endocrine disorders; Cognition; Neuropsychological testing; MRI; Function; Behavior
3.  White Matter Abnormalities and Cognition in a Community Sample 
White matter hyperintensities (WMH) can compromise cognition in older adults, but differences in sampling, WMH measurements, and cognitive assessments contribute to discrepant findings across studies. We examined linear and nonlinear effects of WMH volumes on cognition in 253 reasonably healthy adults. After adjusting for demographic characteristics and total brain volumes, WMH burden was not associated with cognition in those aged 20–59. In participants aged 60 and older, models accounted for ≥58% of the variance in performance on tests of working memory, processing speed, fluency, and fluid intelligence, and WMH volumes accounted for variance beyond that explained by age and other demographic characteristics. Larger increases in WMH burden over 5 years also were associated with steeper cognitive declines over the same interval. Results point to both age-related and age-independent effects of WMH on cognition in later life and suggest that the accumulation of WMH might partially explain normal age-related declines in cognition.
doi:10.1093/arclin/acp037
PMCID: PMC2765350  PMID: 19617597
White matter hyperintensities; Aging; Cognition; Cardiovascular disease

Results 1-3 (3)