Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Approaches towards nitrogen- and phosphorus-efficient rice 
AoB Plants  2012;2012:pls028.
Crop tolerance to lowered availability of nutrients is a major breeding objective in rice. Current understanding of complex genetic control of N and P utilisation is being converged towards precision breeding such as marker assisted breeding for nutrient efficient varieties.
Background and aims
Food production has to increase to meet the demand of a growing population. In light of the high energy costs and increasingly scarce resources, future agricultural systems have to be more productive and more efficient in terms of inputs such as fertilizer and water. The development of rice varieties with high yield under low-nutrient conditions has therefore become a breeding priority. The rapid progress made in sequencing and molecular-marker technology is now beginning to change the way breeding is done, providing new opportunities.
Nitrogen (N) and phosphorus (P) are applied to agricultural systems in large quantities and a deficiency of either nutrient leads to yield losses and triggers complex molecular and physiological responses. The underlying genes are now being identified and studied in detail, and an increasing number of quantitative trait loci (QTLs) related to N and P uptake and utilization are being reported. Here, we provide an overview of the different aspects related to N and P in rice production systems, and apply a breeder's perspective on the potential of relevant genes and pathways for breeding applications.
Main points
For the development of nutrient-efficient rice, a holistic approach should be followed combining optimized fertilizer management with enhanced nutrient uptake via a vigorous root system, leading to increased grain filling and yield. Despite an increasing number of N- and P-related genes and QTLs being reported, very few are actively used in molecular breeding programmes. The complex regulation of N- and P-related pathways challenges breeders and the research community to identify large-effect genes/QTLs. For this it will be important to focus more on the analysis of tolerant genotypes rather than model plants, since tolerance pathways may employ a different set of genes.
PMCID: PMC3484362  PMID: 23115710
2.  Molecular breeding for the development of multiple disease resistance in Basmati rice 
AoB Plants  2012;2012:pls029.
Marker assisted backcross breeding for combining three resistance genes (xa13 and Xa21 for Bacterial Blight, Pi54 for blast) and a major QTL (qSBR11-1 for resistance to Sheath blight) in Basmati rice.
Background and aims
Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection.
The rice cultivar ‘Improved Pusa Basmati 1’ (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar ‘Tetep’ (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines.
Principal results
Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC2F5 through pedigree selection. Marker-assisted selection for qSBR11-1 in BC2F5 using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with ‘Improved Pusa Basmati 1’ for yield, duration and Basmati grain quality.
This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding programmes.
PMCID: PMC3487461  PMID: 23125910

Results 1-2 (2)