PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Equisetum species show uniform epicuticular wax structures but diverse composition patterns 
AoB Plants  2011;2011:plr009.
In the Equisetopsida, different wax distribution and composition patterns in the plant organs indicate a close relationship between wax structure and chemistry and the assimilatory function of these organs. Diverging wax compound classes show the two subgenera of Equisetum to be well separated.
Background and aims
Only few data on the epicuticular waxes (EWs) of horsetails are available. This contribution therefore focuses on the wax micromorphology and chemical composition of Equisetum species of the subgenera Equisetum and Hippochaete.
Methodology
Distribution patterns and structural details of EW on the shoots were studied by scanning electron microscopy. After extraction with chloroform, the chemical composition of wax isolates was analysed by gas chromatography.
Principal results
Epicuticular wax crystals were non-oriented platelets or membraneous platelets. They were usually located on subsidiary cells of stomata and adjacent cells. Other parts of the shoots were covered mainly with a smooth wax film or small granules only. The chemical constituents found were alkanes, esters, aldehydes, primary alcohols and free fatty acids in a range of C20–C36 (in esters C36–C56). All species of the subgenus Hippochaete showed a similar pattern of fractions with high percentages of alkanes and aldehydes, whereas the subgenus Equisetum species had distinctly different wax compositions. Extracts from the internodes—surfaces without well-developed EW crystals and only few stomata—showed the lowest contents of aldehydes.
Conclusions
The covering with EW crystals will provide unhindered gas exchange and, combined with intracuticular wax, may prevent excess water loss during winter in the evergreen shoots of the subgenus Hippochaete. The results indicate that the Equisetum wax micromorphology and biosynthesis are comparable to EW of other pteridophyte classes and mosses.
doi:10.1093/aobpla/plr009
PMCID: PMC3096319  PMID: 22476480

Results 1-1 (1)