PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Green love talks; cell–cell communication during double fertilization in flowering plants 
AoB Plants  2011;2011:plr015.
A major breakthrough in understanding double fertilization has been made by high resolution live-imaging. This has helped resolve several disputed issues such as preferential fertilization and polyspermy block. Cumulated information of molecular components involved in double fertilization highlights the importance of cell-cell communication between male and female gametophytes.
Background
Flowering plant seeds originate from a unique double-fertilization event, which involves two sperm cells and two female gametes, the egg cell and the central cell. For many years our knowledge of mechanisms involved in angiosperm fertilization remained minimal. It was obvious that several signals were required to explain how the male gametes are delivered inside the maternal reproductive tissues to the two female gametes but their molecular nature remained unknown. The difficulties in imaging the double-fertilization process prevented the identification of the mode of sperm cell delivery. It was believed that the two sperm cells were not functionally equivalent.
Scope
We review recent studies that have significantly improved our understanding of the early steps of double fertilization. The attractants of the pollen tube have been identified as small proteins produced by the synergid cells that surround the egg cell. Genetic studies have identified the signalling pathways required for the release of male gametes from the pollen tube. High-resolution imaging of the trajectory of the two male gametes showed that their transport does not involve the synergid cells directly and that isomorphic male gametes are functionally equivalent. We also outline major outstanding issues in the field concerned with the barrier against polyspermy, gamete recognition and mechanisms that prevent interspecies crosses.
doi:10.1093/aobpla/plr015
PMCID: PMC3144379  PMID: 22476485

Results 1-1 (1)