PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (665)
 

Clipboard (0)
None
Journals
Year of Publication
1.  In Vitro Resistance to Thrombin-Induced Platelet Microbicidal Protein among Clinical Bacteremic Isolates of Staphylococcus aureus Correlates with an Endovascular Infectious Source 
Antimicrobial Agents and Chemotherapy  1998;42(12):3169-3172.
Platelet microbicidal proteins (PMPs), small cationic peptides released at sites of endovascular damage, kill common bloodstream pathogens in vitro. Our group previously showed that in vitro resistance of clinical staphylococcal and viridans group streptococcal bacteremic strains to PMPs correlated with the diagnosis of infective endocarditis (IE) (Wu et al., Antimicrob. Agents Chemother. 38:729–732, 1994). However, that study was limited by (i) the small number of Staphylococcus aureus isolates from IE patients, (ii) the retrospective nature of the case definitions, and (iii) the diverse geographic sources of strains. The present study evaluated the in vitro PMP susceptibility phenotype of a large number of staphylococcemic isolates (n = 60), collected at a single medical center and categorized by defined and validated clinical criteria. A significantly higher proportion of staphylococcemic strains from patients with IE was PMP resistant in vitro than the proportion of strains from patients with soft tissue sepsis (83% and 33%, respectively; P < 0.01). Moreover, the levels of PMP resistance (mean percent survival of strains after 2-h exposure to PMP in vitro) were significantly higher for isolates from patients with IE and with vascular catheter sepsis than for strains from patients with abscess sepsis (P < 0.005 and P < 0.01, respectively). These data further support the concept that bloodstream pathogens that exhibit innate or acquired PMP resistance have a survival advantage with respect to either the induction or progression of endovascular infections.
PMCID: PMC106018  PMID: 9835510
2.  Gonococcal Resistance to β-Lactams and Tetracycline Involves Mutation in Loop 3 of the Porin Encoded at the penB Locus 
Antimicrobial Agents and Chemotherapy  1998;42(11):2799-2803.
penB is a chromosomal mutation that confers resistance to β-lactams and tetracyclines and reduced susceptibility to quinolones in Neisseria gonorrhoeae. It is linked to the porin gene (por) and requires the increased expression of an efflux pump due to mtr. Transformation of a susceptible gonococcus (strain H1) with chromosomal DNA from strain FA140 (penA mtr penB; porin serovar IB1) and conjugal transfer of a β-lactamase-expressing plasmid was used to produce isogenic strains for determination of equilibrium periplasmic penicillin concentrations by the method of Zimmermann and Rosselet (W. Zimmermann and A. Rosselet, Antimicrob. Agents Chemother. 12:368–372, 1977). In transformants with the Mtr and PenB phenotypes, equilibrium concentrations of penicillin were reduced. DNA sequence analysis of por from isogenic penB and penB+ transformants revealed 14 sequence differences; nine of these differences resulted in amino acid changes. Three amino acid changes were found in the putative gonococcal equivalent of the pore-constricting loop 3 of Escherichia coli OmpF. Two of these changes (Gly-101–Ala-102→Asp-Asp) result in an increased negative charge at this position in por loop 3. PCR products comprising the complete por gene from strain FA140 were transformed into strain H1-2 (penA mtr; porin serovar IB-3), with the resulting transformants having the antibiotic susceptibility phenotype associated with penB. penB-like mutations were found in loop 3 of clinical isolates of gonococci with chromosomally mediated resistance to penicillin. We conclude that penB is a mutation in loop 3 of por that reduces porin permeability to hydrophilic antibiotics and plays an important role in the development of chromosomally mediated resistance to penicillin and tetracycline in gonococci.
PMCID: PMC105946  PMID: 9797206
3.  Molecular Characterization of OXA-20, a Novel Class D β-Lactamase, and Its Integron from Pseudomonas aeruginosa 
The Pseudomonas aeruginosa Mus clinical isolate produces OXA-18, a pI 5.5 class D extended-spectrum β-lactamase totally inhibited by clavulanic acid (L. N. Philippon, T. Naas, A.-T. Bouthors, V. Barakett, and P. Nordmann, Antimicrob. Agents Chemother. 41:2188–2195, 1997). A second β-lactamase was cloned, and the recombinant Escherichia coli clone pPL10 expressed a pI 7.4 β-lactamase which conferred high levels of amoxicillin and ticarcillin resistance and which was partially inhibited by clavulanic acid. The 2.5-kb insert from pPL10 was sequenced, and a 266-amino-acid protein (OXA-20) was deduced; this protein has low amino acid identity with most of the class D β-lactamases except OXA-2, OXA-15, and OXA-3 (75% amino acid identity with each). OXA-20 is a restricted-spectrum oxacillinase and is unusually inhibited by clavulanic acid. OXA-20 is a peculiar β-lactamase because its translation initiates with a TTG (leucine) codon, which is rarely used as a translational origin in bacteria. Exploration of the genetic environment of oxa20 revealed the presence of the following integron features: (i) a second antibiotic resistance gene, aacA4; (ii) an intI1 gene; and (iii) two 59-base elements, each associated with either oxa20 or aacA4. This integron is peculiar because it lacks the 3′ conserved region, and therefore is not a sul1-associated integron like most of them, and because its 3′ end is located within tnpR, a gene involved in the transposition of Tn5393, a gram-negative transposon. P. aeruginosa Mus produces two novel and unrelated oxacillinases, OXA-18 and OXA-20, both of which are inhibited by clavulanic acid.
PMCID: PMC105865  PMID: 9687410
4.  Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14α-Demethylase (CYP51A1) from Azole-Resistant Candida albicans Clinical Isolates Contribute to Resistance to Azole Antifungal Agents 
The cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) of yeasts is involved in an important step in the biosynthesis of ergosterol. Since CYP51A1 is the target of azole antifungal agents, this enzyme is potentially prone to alterations leading to resistance to these agents. Among them, a decrease in the affinity of CYP51A1 for these agents is possible. We showed in a group of Candida albicans isolates from AIDS patients that multidrug efflux transporters were playing an important role in the resistance of C. albicans to azole antifungal agents, but without excluding the involvement of other factors (D. Sanglard, K. Kuchler, F. Ischer, J.-L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378–2386, 1995). We therefore analyzed in closer detail changes in the affinity of CYP51A1 for azole antifungal agents. A strategy consisting of functional expression in Saccharomyces cerevisiae of the C. albicans CYP51A1 genes of sequential clinical isolates from patients was designed. This selection, which was coupled with a test of susceptibility to the azole derivatives fluconazole, ketoconazole, and itraconazole, enabled the detection of mutations in different cloned CYP51A1 genes, whose products are potentially affected in their affinity for azole derivatives. This selection enabled the detection of five different mutations in the cloned CYP51A1 genes which correlated with the occurrence of azole resistance in clinical C. albicans isolates. These mutations were as follows: replacement of the glycine at position 129 with alanine (G129A), Y132H, S405F, G464S, and R467K. While the S405F mutation was found as a single amino acid substitution in a CYP51A1 gene from an azole-resistant yeast, other mutations were found simultaneously in individual CYP51A1 genes, i.e., R467K with G464S, S405F with Y132H, G129A with G464S, and R467K with G464S and Y132H. Site-directed mutagenesis of a wild-type CYP51A1 gene was performed to estimate the effect of each of these mutations on resistance to azole derivatives. Each single mutation, with the exception of G129A, had a measurable effect on the affinity of the target enzyme for specific azole derivatives. We speculate that these specific mutations could combine with the effect of multidrug efflux transporters in the clinical isolates and contribute to different patterns and stepwise increases in resistance to azole derivatives.
PMCID: PMC105395  PMID: 9527767
13.  Macrolide Susceptibility and β-Lactamase Production among Haemophilus influenzae Isolates in the United States, 1996–1997 
Antimicrobial Agents and Chemotherapy  1998;42(12):3313-3314.
In 1996 and 1997, 68 hospital laboratories throughout the United States determined the β-lactamase production and susceptibility to macrolides of 1,998 isolates of Haemophilus influenzae obtained from patients with community-acquired respiratory tract infections. The MICs at which 90% of the isolates are inhibited of azithromycin, erythromycin, and clarithromycin were 4, 8, and 16 μg/ml, respectively. By National Committee for Clinical Laboratory Standards interpretive criteria, 99 and 78% of the isolates were susceptible to azithromycin and clarithromycin, respectively. The prevalence of β-lactamase production was 32%.
PMCID: PMC106044  PMID: 9835536
16.  In Vitro Activities of Quinupristin-Dalfopristin and the Streptogramin RPR 106972 against Mycoplasma pneumoniae 
The in vitro activities of quinupristin-dalfopristin and streptogramin RPR 106972 were determined with 44 strains of Mycoplasma pneumoniae and compared to those of macrolides, minocycline, and quinolones. All isolates tested were highly susceptible to macrolides and to quinupristin-dalfopristin (MIC at which 90% of the isolates are inhibited [MIC90], 0.0625 μg/ml), followed by RPR 106972 (MIC90, 0.5 μg/ml), quinolones, and minocycline.
PMCID: PMC105521  PMID: 9517955
17.  In Vitro Comparative Efficacy of Voriconazole and Itraconazole against Fluconazole-Susceptible and -Resistant Cryptococcus neoformans Isolates 
In vitro susceptibility testing for 50 clinical isolates of fluconazole-susceptible or -resistant Cryptococcus neoformans was performed with itraconazole and voriconazole. Voriconazole was more potent than itraconazole for fluconazole-susceptible isolates and as potent as itraconazole for fluconazole-susceptible dose-dependent isolates and for fluconazole-resistant isolates. For fluconazole-resistant isolates, the voriconazole and itraconazole MICs ranged from 1 to 2 μg/ml.
PMCID: PMC105440  PMID: 9527812

Results 1-25 (665)