PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (53)
 

Clipboard (0)
None
Journals
Year of Publication
more »
1.  Molecular Characterization of OXA-20, a Novel Class D β-Lactamase, and Its Integron from Pseudomonas aeruginosa 
The Pseudomonas aeruginosa Mus clinical isolate produces OXA-18, a pI 5.5 class D extended-spectrum β-lactamase totally inhibited by clavulanic acid (L. N. Philippon, T. Naas, A.-T. Bouthors, V. Barakett, and P. Nordmann, Antimicrob. Agents Chemother. 41:2188–2195, 1997). A second β-lactamase was cloned, and the recombinant Escherichia coli clone pPL10 expressed a pI 7.4 β-lactamase which conferred high levels of amoxicillin and ticarcillin resistance and which was partially inhibited by clavulanic acid. The 2.5-kb insert from pPL10 was sequenced, and a 266-amino-acid protein (OXA-20) was deduced; this protein has low amino acid identity with most of the class D β-lactamases except OXA-2, OXA-15, and OXA-3 (75% amino acid identity with each). OXA-20 is a restricted-spectrum oxacillinase and is unusually inhibited by clavulanic acid. OXA-20 is a peculiar β-lactamase because its translation initiates with a TTG (leucine) codon, which is rarely used as a translational origin in bacteria. Exploration of the genetic environment of oxa20 revealed the presence of the following integron features: (i) a second antibiotic resistance gene, aacA4; (ii) an intI1 gene; and (iii) two 59-base elements, each associated with either oxa20 or aacA4. This integron is peculiar because it lacks the 3′ conserved region, and therefore is not a sul1-associated integron like most of them, and because its 3′ end is located within tnpR, a gene involved in the transposition of Tn5393, a gram-negative transposon. P. aeruginosa Mus produces two novel and unrelated oxacillinases, OXA-18 and OXA-20, both of which are inhibited by clavulanic acid.
PMCID: PMC105865  PMID: 9687410
8.  Biochemical-Genetic Characterization and Distribution of OXA-22, a Chromosomal and Inducible Class D β-Lactamase from Ralstonia (Pseudomonas) pickettii 
From genomic DNA of Ralstonia pickettii isolate PIC-1, a β-lactamase gene was cloned that encodes the oxacillinase OXA-22. It differs from known oxacillinases, being most closely related to OXA-9 (38% amino acid identity). The hydrolytic spectrum of OXA-22 is limited mostly to benzylpenicillin, cloxacillin, and restricted-spectrum cephalosporins. OXA-22-like genes were identified as single chromosomal copies in five other R. pickettii clinical isolates. The expression of OXA-22-like β-lactamases was inducible in R. pickettii.
PMCID: PMC90041  PMID: 10898703
9.  Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-β-Lactamase and Its Plasmid- and Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France 
Pseudomonas aeruginosa COL-1 was identified in a blood culture of a 39-year-old-woman treated with imipenem in Marseilles, France, in 1996. This strain was resistant to β-lactams, including ureidopenicillins, ticarcillin-clavulanic acid, cefepime, ceftazidime, imipenem, and meropenem, but remained susceptible to the monobactam aztreonam. The carbapenem-hydrolyzing β-lactamase gene of P. aeruginosa COL-1 was cloned, sequenced, and expressed in Escherichia coli DH10B. The deduced 266-amino-acid protein was an Ambler class B β-lactamase, with amino acid identities of 32% with B-II from Bacillus cereus; 31% with IMP-1 from several gram-negative rods in Japan, including P. aeruginosa; 27% with CcrA from Bacteroides fragilis; 24% with BlaB from Chryseobacterium meningosepticum; 24% with IND-1 from Chryseobacterium indologenes; 21% with CphA-1 from Aeromonas hydrophila; and 11% with L-1 from Stenotrophomonas maltophilia. It was most closely related to VIM-1 β-lactamase recently reported from Italian P. aeruginosa clinical isolates (90% amino acid identity). Purified VIM-2 β-lactamase had a pI of 5.6, a relative molecular mass of 29.7 kDa, and a broad substrate hydrolysis range, including penicillins, cephalosporins, cephamycins, oxacephamycins, and carbapenems, but not monobactams. As a metallo-β-lactamase, its activity was zinc dependent and inhibited by EDTA (50% inhibitory concentration, 50 μM). VIM-2 conferred a resistance pattern to β-lactams in E. coli DH10B that paralleled its in vitro hydrolytic properties, except for susceptibility to ureidopenicillins, carbapenems, and cefepime. blaVIM-2 was located on a ca. 45-kb plasmid that in addition conferred resistance to sulfamides and that was not self-transmissible either from P. aeruginosa to E. coli or from E. coli to E. coli. blaVIM-2 was the only gene cassette located within the variable region of a novel class 1 integron, In56, that was weakly related to the blaVIM-1-containing integron. VIM-2 is the second carbapenem-hydrolyzing metalloenzyme characterized from a P. aeruginosa isolate outside Japan.
PMCID: PMC89788  PMID: 10722487
10.  Biochemical Sequence Analyses of GES-1, a Novel Class A Extended-Spectrum β-Lactamase, and the Class 1 Integron In52 from Klebsiella pneumoniae 
Klebsiella pneumoniae ORI-1 was isolated in 1998 in France from a rectal swab of a 1-month-old girl who was previously hospitalized in Cayenne Hospital, Cayenne, French Guiana. This strain harbored a ca. 140-kb nontransferable plasmid, pTK1, that conferred an extended-spectrum cephalosporin resistance profile antagonized by the addition of clavulanic acid, tazobactam, or imipenem. The gene for GES-1 (Guiana extended-spectrum β-lactamase) was cloned, and its protein was expressed in Escherichia coli DH10B, where this pI-5.8 β-lactamase of a ca. 31-kDa molecular mass conferred resistance to oxyimino cephalosporins (mostly to ceftazidime). GES-1 is weakly related to the other plasmid-located Ambler class A extended-spectrum β-lactamases (ESBLs). The highest percentage of amino acid identity was obtained with the carbenicillinase GN79 from Proteus mirabilis; with YENT, a chromosome-borne penicillinase from Yersinia enterocolitica; and with L-2, a chromosome-borne class A cephalosporinase from Stenotrophomonas maltophilia (36% amino acid identity each). However, a dendrogram analysis showed that GES-1 clustered within a class A ESBL subgroup together with ESBLs VEB-1 and PER-1. Sequencing of a 7,098-bp DNA fragment from plasmid pTK1 revealed that the GES-1 gene was located on a novel class 1 integron named In52 that was characterized by (i) a 5′ conserved segment containing an intI1 gene possessing two putative promoters, P1 and P2, for coordinated expression of the downstream antibiotic resistance genes and an attI1 recombination site; (ii) five antibiotic gene cassettes, blaGES-1, aac(6′)Ib′ (gentamicin resistance and amikacin susceptibility), dfrXVb (trimethoprim resistance), a novel chloramphenicol resistance gene (cmlA4), and aadA2 (streptomycin-spectinomycin resistance); and (iii) a 3′ conserved segment consisting of qacEΔ1 and sulI. The blaGES-1 and aadA2 gene cassettes were peculiar, since they lacked a typical 59-base element. This work identified the second class A ESBL gene of a non-TEM, non-SHV series which was located in the plasmid and integron, thus providing it additional means for its spread and its expression.
PMCID: PMC89737  PMID: 10681329
11.  Role of ISKpn7 and Deletions in blaKPC Gene Expression 
The carbapenemase-encoding blaKPC gene, which is rapidly spreading in Gram-negative rods, is located on a Tn3-based transposon, Tn4401, which carries a polymorphic region giving rise to five isoforms (a, b, c, d, and e) that is located immediately upstream of the blaKPC gene and thus likely involved in its expression. Using 5′ rapid amplification of cDNA ends (5′RACE), we identified three potential promoter sequences (P1, P2, and P3) upstream of the blaKPC gene, of which only P1 (absent from isoforms c and d) and P2 (present in all isoforms, with a −35 box located inside the right inverted repeat of ISKpn7) were shown to be true promoters involved in expression. One representative of each different promoter combination of Tn4401, i.e., P2 alone (isoform c), P1-P2 (isoform a), and P1-P2-P3 (isoform b), was cloned into an Escherichia coli plasmid vector. Using reverse transcription-PCR (RT-PCR), the highest level of expression was obtained with isoform a (P1 and P2), which is also the most commonly encountered form in enterobacterial clinical isolates, followed by isoforms b (P1, P2, and P3) and c (P2 only). These differences in expression led to slight differences in MIC values of carbapenems. In silico analysis of the DNA sequence of isoform b revealed a stem-loop structure that is likely responsible for strong stops observed in 5′RACE experiments and for decreased expression compared to that with isoform a (P1 and P2). In addition, such structures could also be at the origin for the deletions observed in isoforms a and c. Taken together, these results indicate that the P1 and P2 promoters both contribute to the expression of the blaKPC gene and that the construct with the highest level of expression is that possessing isoform a, which is also the most commonly encountered form in clinical isolates.
doi:10.1128/AAC.00334-12
PMCID: PMC3421896  PMID: 22733068
12.  CTX-M-Type Extended-Spectrum β-Lactamase That Hydrolyzes Ceftazidime through a Single Amino Acid Substitution in the Omega Loop 
Antimicrobial Agents and Chemotherapy  2001;45(12):3355-3361.
Escherichia coli ILT-1, Klebsiella pneumoniae ILT-2, and K. pneumoniae ILT-3 were isolated in May 1999 in Paris, France, from a rectal swab of a hospitalized 5-month-old girl. These isolates had a clavulanic acid-inhibited substrate profile that included expanded-spectrum cephalosporins. The MICs of cefotaxime were higher for E. coli ILT-1 and K. pneumoniae ILT-2 than for K. pneumoniae ILT-3, while the opposite was found for the MICs of ceftazidime. Genetic and biochemical analyses revealed that E. coli ILT-1 and K. pneumoniae ILT-2 produced the CTX-M-18 β-lactamase, while K. pneumoniae ILT-3 produced the CTX-M-19 β-lactamase. The amino acid sequence of the CTX-M-18 β-lactamase differed from that of the CTX-M-9 β-lactamase by an Ala-to-Val change at position 231, while CTX-M-19 possessed an additional Pro-to-Ser change at position 167 in the omega loop of Ambler class A enzymes. The latter amino acid substitution may explain the CTX-M-19-mediated hydrolysis of ceftazidime, which has not been reported for other CTX-M-type enzymes. The blaCTX-M-18 and blaCTX-M-19 genes were located on transferable plasmids that varied in size (ca. 60 and 50 kb, respectively) but that showed similar restriction patterns.
doi:10.1128/AAC.45.12.3355-3361.2001
PMCID: PMC90837  PMID: 11709308
13.  AmpD Is Required for Regulation of Expression of NmcA, a Carbapenem-Hydrolyzing β-Lactamase of Enterobacter cloacae 
Antimicrobial Agents and Chemotherapy  2001;45(10):2908-2915.
To further elucidate the induction process of the carbapenem-hydrolyzing β-lactamase of Ambler class A, NmcA, ampD genes of the wild-type (WT) strain and of ceftazidime-resistant mutants of Enterobacter cloacae NOR-1 were cloned and tested in transcomplementation experiments. Ceftazidime-resistant E. cloacae NOR-1 mutants exhibited derepressed expression of the AmpC-type cephalosporinase and of the carbapenem-hydrolyzing β-lactamase NmcA. The ampD genes of Escherichia coli and E. cloacae WT NOR-1 transcomplemented the ceftazidime-resistant E. cloacae NOR-1 mutants to the WT level of β-lactamase expression, while the mutated ampD alleles of E. cloacae NOR-1 failed to do so. The deduced E. cloacae NOR-1 WT AmpD protein exhibited 95 and 91% amino acid identity with the E. cloacae O29 and E. cloacae 14 WT AmpD proteins, respectively. Of the 12 ceftazidime-resistant E. cloacae NOR-1 strains, 3 had AmpD proteins with amino acid changes, while the others had truncated AmpD proteins. Most of these mutations were located outside the conserved regions that link the AmpD proteins to the cell wall hydrolases. AmpD from E. cloacae NOR-1 is involved in the regulation of expression of both β-lactamases (NmcA and AmpC), suggesting that structurally unrelated genes may be under the control of an identical genetic system.
doi:10.1128/AAC.45.10.2908-2915.2001
PMCID: PMC90751  PMID: 11557489
14.  GES-2, a Class A β-Lactamase from Pseudomonas aeruginosa with Increased Hydrolysis of Imipenem 
Pseudomonas aeruginosa GW-1 was isolated in 2000 in South Africa from blood cultures of a 38-year-old female who developed nosocomial pneumonia. This isolate harbored a self-transferable ca. 100-kb plasmid that conferred an expanded-spectrum cephalosporin resistance profile associated with an intermediate susceptibility to imipenem. A β-lactamase gene, blaGES-2, was cloned from whole-cell DNA of P. aeruginosa GW-1 and expressed in Escherichia coli. GES-2, with a pI value of 5.8, hydrolyzed expanded-spectrum cephalosporins, and its substrate profile was extended to include imipenem compared to that of GES-1, identified previously in Klebsiella pneumoniae. GES-2 activity was less inhibited by clavulanic acid, tazobactam and imipenem than GES-1. The GES-2 amino acid sequence differs from that of GES-1 by a glycine-to-asparagine substitution in position 170 located in the omega loop of Ambler class A enzymes. This amino acid change may explain the extension of the substrate profile of the plasmid-encoded β-lactamase GES-2.
doi:10.1128/AAC.45.9.2598-2603.2001
PMCID: PMC90698  PMID: 11502535
15.  Molecular and Biochemical Analysis of AST-1, a Class A β-Lactamase from Nocardia asteroides Sensu Stricto 
A β-lactamase gene was cloned from a Nocardia asteroides sensu stricto clinical isolate. A recombinant plasmid, pAST-1, expressed the β-lactamase AST-1 in Escherichia coli JM109. Its pI was 4.8, and its relative molecular mass was 31 kDa. E. coli JM109(pAST-1) was resistant to penicillins and narrow-spectrum cephalosporins. The β-lactamase AST-1 had a restricted hydrolytic activity spectrum. Its activity was partially inhibited by clavulanic acid but not by sulbactam and tazobactam. AST-1 is an Ambler class A β-lactamase sharing 65% amino acid identity with β-lactamase FAR-1, the most closely related enzyme.
doi:10.1128/AAC.45.3.878-882.2001
PMCID: PMC90387  PMID: 11181374
16.  OXA-28, an Extended-Spectrum Variant of OXA-10 β-Lactamase from Pseudomonas aeruginosa and Its Plasmid- and Integron-Located Gene 
Pseudomonas aeruginosa ED-1, isolated from a pulmonary brush of a patient hospitalized in a suburb of Paris, France, was resistant to ceftazidime and of intermediate susceptibility to ureidopenicillins and to cefotaxime. Cloning and expression of the β-lactamase gene content of this isolate in Escherichia coli DH10B identified a novel OXA-10 variant, OXA-28, with a pI value of 8.1 and a molecular mass of 29 kDa. It differed from OXA-10 by 10 amino acid changes and from OXA-13 and OXA-19 by 2 amino acid changes, including a glycine instead of tryptophan at position 164, which is likely involved in its resistance to ceftazidime. Like OXA-11, -14, -16, and -19 and as opposed to OXA-17, OXA-28 predominantly compromised ceftazidime and had only marginal effect on the MICs of aztreonam and cefotaxime in P. aeruginosa. Once expressed in E. coli, OXA-28 raised the MIC of ceftazidime to a much higher level than those of amoxicillin, cephalothin, and cefotaxime (128, 16, 8, and 4 μg/ml, respectively). OXA-28 β-lactamase had a broad spectrum of activity, including ceftazidime. Its activity was partially antagonized by clavulanic acid (50% inhibitory concentration, 10 μM) and NaCl addition. The oxa28 gene cassette was inserted in the variable region of a class 1 integron, In57, immediately downstream of an amino 6′-N-acetyltransferase gene cassette, aac(6′)Ib. The structures of the integrons carrying either oxa28, oxa13, or oxa19 gene cassettes were almost identical, suggesting that they may have derived from a common ancestor as a result of the common European origin of the P. aeruginosa isolates. In57 was located on a self-transferable plasmid of ca. 150 kb that was transferred from P. aeruginosa to P. aeruginosa.
doi:10.1128/AAC.45.2.447-453.2001
PMCID: PMC90311  PMID: 11158739
17.  Heterogeneity of AmpC Cephalosporinases of Hafnia alvei Clinical Isolates Expressing Inducible or Constitutive Ceftazidime Resistance Phenotypes 
Antimicrobial Agents and Chemotherapy  2000;44(11):3220-3223.
Ten unrelated Hafnia alvei clinical isolates were grouped according to either their low-level and inducible cephalosporinase production or their high-level and constitutive cephalosporinase production phenotype. Their AmpC sequences shared 85 to 100% amino acid identity. The immediate genetic environment of ampC genes was conserved in H. alvei isolates but was different from that found in other ampC-possessing enterobacterial species.
PMCID: PMC101639  PMID: 11036059
18.  Genetic Diversity of Carbapenem-Hydrolyzing Metallo-β-Lactamases from Chryseobacterium (Flavobacterium) indologenes 
Antimicrobial Agents and Chemotherapy  2000;44(11):3028-3034.
The class B carbapenem-hydrolyzing β-lactamase IND-1 has been characterized for Chryseobacterium indologenes strain 001. With internal primers for the bla gene for IND-1 (blaIND-1) and an internal blaIND-1 probe, PCR amplifications failed, while hybridization results were positive when DNA from another C. indologenes isolate, strain CIP101026, was used as a template. Thus, a blaIND-related gene was cloned from this C. indologenes reference strain. Sequencing of the insert of a recombinant plasmid conferring resistance to carbapenems revealed an open reading frame with a G + C content of 39.9% and coding for a 243-amino-acid preprotein named IND-2. IND-2 shared 80% amino acid identity with IND-1 and had a similar broad-spectrum resistance profile, including resistance to carbapenems. It was classified in functional subgroup 3a of class B carbapenem-hydrolyzing β-lactamases. IND-1 and IND-2, despite their genetic diversity, possessed similar kinetic parameters, except that ceftazidime was hydrolyzed less by IND-2. To obtain the entire blaIND-related gene sequences of eight other C. indologenes isolates, PCR was performed using internal and external primers, followed by inverse PCR techniques. The likely chromosome-mediated metallo-β-lactamases of the 10 C. indologenes isolates were divided into several groups and subgroups. IND-1, IND-2, IND-2a, IND-3, and IND-4 shared 77 to 99% amino acid identity.
PMCID: PMC101598  PMID: 11036018
19.  Molecular and Biochemical Heterogeneity of Class B Carbapenem-Hydrolyzing β-Lactamases in Chryseobacterium meningosepticum 
Although the carbapenem-hydrolyzing β-lactamase (CHβL) BlaB-1 is known to be in Chryseobacterium meningosepticum NCTC 10585, a second CHβL gene, blaGOB-1, was cloned from another C. meningosepticum clinical isolate (PINT). The G+C content of blaGOB-1 (36%) indicated the likely chromosomal origin of this gene. Its expression in Escherichia coli DH10B yields a mature CHβL with a pI of 8.7 and a relative molecular mass of 28.2 kDa. In E. coli, GOB-1 conferred resistance to narrow-spectrum cephalosporins and reduced susceptibility to ureidopenicillins, broad-spectrum cephalosporins, and carbapenems. GOB-1 had a broad-spectrum hydrolysis profile including penicillins and cephalosporins (but not aztreonam). The catalytic efficiency for meropenem was higher than for imipenem. GOB-1 had low amino acid identity with the class B CHβLs, sharing 18% with the closest, L-1 from Stenotrophomonas maltophilia, and only 11% with BlaB-1. Most of the conserved amino acids that may be involved in the active site of CHβLs (His-101, Asp-103, His-162, and His-225) were identified in GOB-1. Sequence heterogeneity was found for GOB-1-like and BlaB-1-like β-lactamases, having 90 to 100% and 86 to 100% amino acid identity, respectively, among 10 unrelated C. meningosepticum isolates. Each isolate had a GOB-1-like and a BlaB-1-like gene. The same combination of GOB-1-like and BlaB-1-like β-lactamases was not found in two different isolates. C. meningosepticum is a bacterial species with two types of unrelated chromosome-borne class B CHβLs that can be expressed in E. coli and, thus, may represent a clinical threat if spread in gram-negative aerobes.
PMCID: PMC89979  PMID: 10858348
20.  Biochemical-Genetic Characterization and Regulation of Expression of an ACC-1-Like Chromosome-Borne Cephalosporinase from Hafnia alvei 
A naturally occurring AmpC β-lactamase (cephalosporinase) gene was cloned from the Hafnia alvei 1 clinical isolate and expressed in Escherichia coli. The deduced AmpC β-lactamase (ACC-2) had a pI of 8 and a relative molecular mass of 37 kDa and showed 50 and 47% amino acid identity with the chromosome-encoded AmpCs from Serratia marcescens and Providentia stuartii, respectively. It had 94% amino acid identity with the recently described plasmid-borne cephalosporinase ACC-1 from Klebsiella pneumoniae, suggesting the chromosomal origin of ACC-1. The hydrolysis constants (kcat and Km) showed that ACC-2 was a peculiar cephalosporinase, since it significantly hydrolyzed cefpirome. Once its gene was cloned and expressed in E. coli (pDEL-1), ACC-2 conferred resistance to ceftazidime and cefotaxime but also an uncommon reduced susceptibility to cefpirome. A divergently transcribed ampR gene with an overlapping promoter compared with ampC (blaACC-2) was identified in H. alvei 1, encoding an AmpR protein that shared 64% amino acid identity with the closest AmpR protein from P. stuartii. β-Lactamase induction experiments showed that the ampC gene was repressed in the absence of ampR and was activated when cefoxitin or imipenem was added as an inducer. From H. alvei 1 cultures that expressed an inducible-cephalosporinase phenotype, several ceftazidime- and cefpirome-cross-resistant H. alvei 1 mutants were obtained upon selection on cefpirome- or ceftazidime-containing plates, and H. alvei 1 DER, a ceftazidime-resistant mutant, stably overproduced cephalosporinase. Transformation of H. alvei 1 DER or E. coli JRG582 (ampDE mutant) harboring ampC and ampR from H. alvei 1 with a recombinant plasmid containing ampD from E. coli resulted in a decrease in the MIC of β-lactam and recovery of an inducible phenotype for H. alvei 1 DER. Thus, AmpR and AmpD proteins may regulate biosynthesis of the H. alvei cephalosporinase similarly to other enterobacterial cephalosporinases.
PMCID: PMC89899  PMID: 10817695
21.  Genetic-Biochemical Analysis and Distribution of the Ambler Class A β-Lactamase CME-2, Responsible for Extended-Spectrum Cephalosporin Resistance in Chryseobacterium (Flavobacterium) meningosepticum 
In vitro synergy between extended-spectrum cephalosporins and either clavulanic acid or cefoxitin was found for Chryseobacterium meningosepticum isolates during a double-disk assay on an agar plate. An extended-spectrum β-lactamase (ESBL) gene from a C. meningosepticum clinical isolate was cloned and expressed in Escherichia coli DH10B. Its protein conferred resistance to most β-lactams including extended-spectrum cephalosporins but not to cephamycins or to imipenem. Its activity was strongly inhibited by clavulanic acid, sulbactam, and tazobactam, as well as by cephamycins and imipenem. Sequence analysis of the cloned DNA fragment revealed an open reading frame (ORF) of 891 bp with a G+C content of 33.9%, which lies close to the expected range of G+C contents of members of the Chryseobacterium genus. The ORF encoded a precursor protein of 297 amino acids, giving a mature protein with a molecular mass of 31 kDa and a pI value of 9.2 in E. coli. This gene was very likely chromosomally located. Amino acid sequence comparison showed that this β-lactamase, named CME-2 (C. meningosepticum ESBL), is a novel ESBL of the Ambler class A group (Bush functional group 2be), being weakly related to other class A β-lactamases. It shares only 39 and 35% identities with the ESBLs VEB-1 from E. coli MG-1 and CBL-A from Bacteroides uniformis, respectively. The distribution of blaCME-2 among unrelated C. meningosepticum species isolates showed that blaCME-2-like genes were found in the C. meningosepticum strains studied but were absent from strains of other C. meningosepticum-related species. Each C. meningosepticum strain produced at least two β-lactamases, with one of them being a noninducible serine ESBL with variable pIs ranging from 7.0 to 8.5.
PMCID: PMC89619  PMID: 10602714
22.  Biochemical-Genetic Analysis and Distribution of FAR-1, a Class A β-Lactamase from Nocardia farcinica 
From genomic DNA of the clinical isolate Nocardia farcinica VIC, a 1.6-kb Sau3AI fragment was cloned and expressed in Escherichia coli JM109. The recombinant strain expressed a β-lactamase (pI, 4.6), FAR-1, which conferred high levels of resistance to amoxicillin, piperacillin, ticarcillin, and cephalothin. The hydrolysis constants (kcat, Km, Ki, and 50% inhibitory concentration) confirmed the MIC results and showed that FAR-1 activity is inhibited by clavulanic acid and at a low level by tazobactam and sulbactam. Moreover, FAR-1 β-lactamase hydrolyzes aztreonam (at a low level) without significant activity against ceftazidime, cefotaxime and imipenem. FAR-1 mature protein of molecular mass ca 32 kDa, has less than 60% amino acid identity with any other class A β-lactamases, being most closely related to PEN-A from Burkholderia cepacia (52%). A blaFAR-1-like gene was found in all studied N. farcinica strains, underlining the constitutive origin of this gene.
PMCID: PMC89337  PMID: 10390216
23.  An SHV-Derived Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa 
A clinical isolate of Pseudomonas aeruginosa RP-1 produced the extended-spectrum β-lactamase (ESBL) SHV-2a. Its gene was expressed from a composite promoter made of the −35 region derived from the left inverted repeat of IS26 and the −10 region from the blaSHV-2a promoter itself. The DNA sequences immediately surrounding blaSHV-2a were homologous to plasmid pMPA2a from Klebsiella pneumoniae KpZU-3, while further away and 3′ to the blaSHV-2a gene, a sequence corresponding to the left end of Tn1721 was detected, thus indicating a likely enterobacterial origin of this ESBL gene.
PMCID: PMC89260  PMID: 10223953
24.  Integron- and Carbenicillinase-Mediated Reduced Susceptibility to Amoxicillin-Clavulanic Acid in Isolates of Multidrug-Resistant Salmonella enterica Serotype Typhimurium DT104 from French Patients 
Fifty-seven Salmonella enterica serotype Typhimurium (S. typhimurium) isolates were collected from human patients in two French hospitals, Hôpital Antoine Béclère (Clamart, France) and Hôpital Bicêtre (Le Kremlin-Bicêtre, France), between 1996 and 1997. Thirty of them (52 percent) were resistant to amino-, carbeni-, and ureidopenicillins, had reduced susceptibility to amoxicillin-clavulanic acid, were susceptible to cephalothin, and were resistant to sulfonamides, streptomycin, chloramphenicol, and tetracyclines. All these strains possessed a blaPSE-1-like gene and were of phage type DT104. Ten of them were studied in more detail, which revealed that blaPSE-1 is located on the variable region of a class 1 integron. This integron was found to be chromosomally located, as was another class 1 integron containing aadA2, a streptomycin-spectinomycin resistance gene. The reduced susceptibility to amoxicillin-clavulanic acid (and to ticarcillin-clavulanic acid) may result from the high level of hydrolysis of the β-lactam rather than to the clavulanic acid resistance properties of PSE-1 in these clonally related S. typhimurium isolates.
PMCID: PMC89117  PMID: 10223920
25.  Cloning, Sequence Analyses, Expression, and Distribution of ampC-ampR from Morganella morganii Clinical Isolates 
Shotgun cloning experiments with restriction enzyme-digested genomic DNA from Morganella morganii 1, which expresses high levels of cephalosporinase, into the pBKCMV cloning vector gave a recombinant plasmid, pPON-1, which encoded four entire genes: ampC, ampR, an hybF family gene, and orf-1 of unknown function. The deduced AmpC β-lactamase of pI 7.6 shared structural and functional homologies with AmpC from Citrobacter freundii, Escherichia coli, Yersinia enterocolitica, Enterobacter cloacae, and Serratia marcescens. The overlapping promoter organization of ampC and ampR, although much shorter in M. morganii than in the other enterobacterial species, suggested similar AmpR regulatory properties. The MICs of β-lactams for E. coli MC4100 (ampC mutant) harboring recombinant plasmid pACYC184 containing either ampC and ampR (pAC-1) or ampC (pAC-2) and induction experiments showed that the ampC gene of M. morganii 1 was repressed in the presence of ampR and was activated when a β-lactam inducer was added. Moreover, transformation of M. morganii 1 or of E. coli JRG582 (ΔampDE) harboring ampC and ampR with a recombinant plasmid containing ampD from E. cloacae resulted in a decrease in the β-lactam MICs and an inducible phenotype for M. morganii 1, thus underlining the role of an AmpD-like protein in the regulation of the M. morganii cephalosporinase. Fifteen other M. morganii clinical isolates with phenotypes of either low-level inducible cephalosporinase expression or high-level constitutive cephalosporinase expression harbored the same ampC-ampR organization, with the hybF and orf-1 genes surrounding them; the organization of these genes thus differed from those of ampC-ampR genes in C. freundii and E. cloacae, which are located downstream from the fumarate operon. Finally, an identical AmpC β-lactamase (DHA-1) was recently identified as being plasmid encoded in Salmonella enteritidis, and this is confirmatory evidence of a chromosomal origin of the plasmid-mediated cephalosporinases.
PMCID: PMC89205  PMID: 10103179

Results 1-25 (53)