Search tips
Search criteria

Results 1-25 (56)

Clipboard (0)
Year of Publication
more »
Document Types
1.  Antiviral drug susceptibility of human herpesvirus 8. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2754-2756.
We studied the susceptibility of human herpesvirus 8 (HHV-8) to a number of antiherpesvirus agents. The acyclic nucleoside phosphonate (ANP) analogs cidofovir and HPMPA [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)adenine] effected potent inhibition of HHV-8 DNA synthesis, with 50% effective concentrations (EC50) of 6.3 and 0.6 microM, respectively. Adefovir, an ANP with both antiretrovirus and antiherpesvirus activity, blocked HHV-8 DNA replication at a fourfold-lower concentration than did foscarnet (EC50 of 39 and 177 microM, respectively). The most potent inhibitory effect was obtained with the N-7-substituted nucleoside analog S2242 (EC50, 0.11 microM). The nucleoside analogs acyclovir, penciclovir, H2G ((R)-9-[4-hydroxy-2-(hydroxymethyl) butyl]guanine), and brivudine had weak to moderate effects (EC50 of > or =75, 43, 42, and 24 microM, respectively, and EC90 of > or =75 microM), whereas ganciclovir elicited pronounced anti-HHV-8 activity (EC50, 8.9 microM).
PMCID: PMC164202  PMID: 9420052
2.  Sensitivity of human immunodeficiency virus to bicyclam derivatives is influenced by the three-dimensional structure of gp120. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2616-2620.
The bicyclams are a new class of anti-human immunodeficiency virus (anti-HIV) compounds targeted at viral entry. From marker rescue experiments, it appears that the envelope gp120 glycoprotein plays an important role in the anti-HIV activity of the bicyclams. Bicyclam-resistant strains contain a number of amino acid changes scattered over the V2 to V5 region of gp120. Experiments aimed at estimating the relative importance of particular amino acid changes with regard to the overall resistance pattern are described. The sequences of some partially bicyclam-resistant virus strains, obtained during the resistance development process, were analyzed, and the corresponding 50% effective concentrations were determined. Selected mutations observed in bicyclam-resistant strains were introduced in the wild-type background by site-directed mutagenesis. In addition, some amino acids were back-mutated to their wild-type counterparts in an otherwise JM3100-resistant strain. The sensitivities of these mutant viruses to bicyclams were determined. Construction of chimeric viruses, carrying the V3 loop of JM3100-resistant virus in a wild-type HIV type 1 HXB2 background, enabled us to investigate the importance of the mutations in the V3 loop of JM3100-resistant virus. From the results described in the report, it can be concluded that single amino acid substitutions do not influence the observed resistance to JM3100. Also, the mutations in the V3 loop are not sufficient to engender even a partially resistant phenotype. We postulate that the overall conformation of gp120 determines the degree of sensitivity or resistance of HIV strains to bicyclams.
PMCID: PMC164179  PMID: 9420029
3.  Antiretroviral activities of acyclic nucleoside phosphonates [9-(2-phosphonylmethoxyethyl)adenine, 9-(2-phosphonylmethoxyethyl)guanine, (R)-9-(2-phosphonylmethoxypropyl)adenine, and MDL 74,968] in cell cultures and murine sarcoma virus-infected newborn NMRI mice. 
From a side-by-side comparative study, the acyclic nucleoside phosphonates (R)-9-(2-phosphonylmethoxypropyl)adenine [(R)-PMPA] and 9-(2-methylidene-3-phosphonomethoxypropyl)guanine (MDL 74,968) proved more selective in their inhibitory effect on human immunodeficiency virus types 1 and 2, feline immunodeficiency virus, and Moloney murine sarcoma virus (MSV) in cell cultures than the 9-(2-phosphonylmethoxyethyl) derivatives of adenine (PMEA) and guanine (PMEG). In particular, PMEG proved quite toxic. PMEA, (R)-PMPA, and MDL 74,968 afforded a marked delay in MSV-induced tumor initiation in MSV-infected newborn NMRI mice and substantially delayed associated animal death at doses as low as 4 to 10 mg/kg of body weight. Treatment of the NMRI mice with PMEA, (R)-PMPA, and MDL 74,968 at 25 or 50 mg/kg resulted in a high percentage of long-term survivors.
PMCID: PMC163760  PMID: 9056002
4.  Activities of various compounds against murine and primate polyomaviruses. 
Polyomavirus infections in humans are due to BK virus (BKV) and JC virus (JCV). Diseases associated with human polyomaviruses occur mostly in immunocompromised adults, e.g., progressive multifocal leukoencephalopathy (PML), caused by JCV, in AIDS patients and hemorrhagic cystitis and uretral stenosis, caused by BKV, in transplant recipients. No therapy is available for these diseases, which necessitates the development of chemical entities that are active against polyomaviruses. Several antiviral compounds were evaluated to determine their effects on the in vitro replication of mouse polyomavirus and the primate viruses simian virus 40 (SV40), SV40 PML-1, and SV40 PML-2. The activity of the different compounds was assessed by a cytopathic effect reduction assay and confirmed in a virus yield assay. Cidofovir [HPMPC; (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] and its cyclic counterpart emerged as the most selective antipolyomavirus agents. The 50% inhibitory concentrations for HPMPC were in the range of 4 to 7 micrograms/ml, and its selectivity index varied from 11 to 20 for mouse polyomavirus and from 23 to 33 for SV40 strains in confluent cell monolayers. Cell cytotoxicity was up to 15-fold greater in growing cells. Other acyclic nucleoside phosphonates (i.e., HPMPA; [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine] and PMEG [9-(2-phosphonylmethoxyethyl)-guanine]) also showed some activity but had low selectivity. None of the other drugs tested against these animal viruses (i.e., acyclovir, ganciclovir, brivudine, ribavirin, foscarnet, and cytarabine) showed significant activity. Thus, HPMPC deserves further evaluation as a candidate drug for polyomavirus infections in the immunocompromised host.
PMCID: PMC163756  PMID: 9055998
5.  Identification of novel thiocarboxanilide derivatives that suppress a variety of drug-resistant mutant human immunodeficiency virus type 1 strains at a potency similar to that for wild-type virus. 
A large variety of carboxanilide and thiocarboxanilide derivatives in which the original oxathiin or aliphatic moieties present in the prototype compounds UC84 and UC38 were replaced by an (un) substituted furanyl, thienyl, phenyl, or pyrrole entity have been evaluated for activity against wild-type human immunodeficiency virus type 1 strain IIIB [HIV-1 (IIIB)] and a series of mutant virus strains derived thereof. The mutant viruses contained either the Leu-100-->Ile, Lys-103-->Asn, Val-106-->Ala, Glu-138-->Lys, Tyr-181-->Cys, or Tyr-188-->Leu mutation in their reverse transcriptase. Several 3-(2-methylfuranyl)- and 3-(2-methylthienyl)-thiocarboxanilide ester, (thio)ether, and oxime ether derivatives showed exquisitely potent antiviral activity against wild-type HIV-1 (50% effective concentration, 0.009 to 0.021 microM). The pentenylethers of the 2-methylfuranyl and 2-methylthienyl derivatives (i.e., 313, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]- 2-methyl-3-furancarbothioamide or UC-781, and 314, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl] -2-methyl-3-thiophenecarbothioamide or UC-82) proved virtually equally inhibitory for wild-type and the Ile-100, Ala-106, and Lys-138 mutant virus strains (50% effective concentration, 0.015 to 0.021 microM). Their inhibitory effect against the Asn-103 and Cys-181 reverse transcriptase mutant virus strains was decreased only four- to sevenfold compared with wildtype virus. UC-781 and UC-82 should be considered potential candidate drugs for the treatment of HIV-1-infected individuals.
PMCID: PMC163349  PMID: 8726019
6.  Antiretroviral activity and pharmacokinetics in mice of oral bis(pivaloyloxymethyl)-9-(2-phosphonylmethoxyethyl)adenine, the bis(pivaloyloxymethyl) ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine. 
Lipophilic ester prodrugs of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), i.e., bis(pivaloyloxymethyl)-PMEA [bis(POM)-PMEA] and diphenyl-PMEA, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antiviral agent. The antiretroviral efficacy was determined in severe combined immune deficiency (SCID) mice infected with Moloney murine sarcoma virus (MSV). They were treated twice daily for 5 days after infection. Oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg of body weight per day proved markedly effective in delaying MSV-induced tumor formation and death of the mice. Oral bis(POM)-PMEA afforded anti-MSV efficacy equal to that of subcutaneous PMEA given at equimolar doses. Oral treatment with PMEA or diphenyl-PMEA proved less efficient. Similarly, in mice infected with Friend leukemia virus (FLV), oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg per day effected a marked inhibition of FLV-induced splenomegaly (87 and 48% inhibition, respectively), the efficacy being equal to that of PMEA given subcutaneously at equivalent doses. Pharmacokinetic experiments with mice showed that the oral bioavailabilities of PMEA following oral gavage of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 50 mg of PMEA per kg) were 53,3, and 16%, respectively. These data were calculated from the levels of free PMEA in plasma. Also, the recoveries of free PMEA in the urine upon oral administration of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 25 mg of PMEA per kg) were 48, 4, and 7%, respectively. Oral bis(POM)-PMEA was not recovered from plasma, suggesting that it was readily cleaved to free PMEA. In contrast, diphenyl-PMEA was not efficiently cleaved to free PMEA, resulting in a rather low oral bioavailability of PMEA from this prodrug. Bis(POM)-PMEA appears to be an efficient oral prodrug of PMEA that deserves further clinical evaluation in human immunodeficiency virus-infected individuals.
PMCID: PMC163050  PMID: 8787873
7.  Susceptibilities of several drug-resistant herpes simplex virus type 1 strains to alternative antiviral compounds. 
Resistant herpes simplex virus type 1 strains were obtained under the selective pressure of acyclovir, ganciclovir, bromovinyldeoxyuridine, foscarnet, 2-phosphonylmethoxyehtyl (PME) derivatives of adenine and 2,6-diaminopurine, 3-hydroxy-2-phosphonylmethoxypropyl derivatives of adenine and cytosine, and 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine (S2242). The drug susceptibility profiles of resistant strains point to differences in the modes of action of PME and 3-hydroxy-2-phosphonylmethoxypropyl derivatives and common mechanisms of action of foscarnet, S2242, and PME derivatives against herpes simplex virus type 1 replication.
PMCID: PMC162798  PMID: 7492121
8.  Differential activities of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives against different human immunodeficiency virus type 1 mutant strains. 
A series of 23 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives that were highly potent inhibitors of wild-type human immunodeficiency virus type 1 strain IIIB (HIV-1/IIIB) replication in CEM cells were evaluated against a panel of HIV-1 mutant strains containing the replacement of leucine by isoleucine at position 100 (100-Leu-->Ile), 103-Lys-->Asn, 106-Val-->Ala, 138-Glu-->Lys, 181-Tyr-->Cys, 181-Tyr-->Ile, or 188-Tyr-->His in their reverse transcriptase (RT). A different structure-antiviral activity relationship was found, depending on the nature of the mutated amino acid in the HIV-1 RT. The results show that 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylbenzyl)uracil, 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)uracil, and 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)-2-thiouracil remain active against the majority of viruses containing single mutations which confer resistance to nonnucleoside RT inhibitors.
PMCID: PMC162671  PMID: 7540384
9.  (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine is a potent inhibitor of feline immunodeficiency virus infection. 
The antiviral efficacy of acyclic nucleoside phosphonates, including 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine [(R)-PMPDAP] against feline immunodeficiency virus (FIV) infection was determined. (R)-PMPDAP showed the highest selectivity index (> 2,000) in vitro. Treatment of experimentally FIV-infected asymptomatic cats with PMEA or (R)-PMPDAP had no effect on the CD4+/CD8+ ratio. However, mean plasma viral RNA concentrations decreased significantly in the (R)-PMPDAP-treated cats. Our data show that, in comparison to PMEA, (R)-PMPDAP is a more potent and less toxic inhibitor of FIV replication both in vitro and in vivo.
PMCID: PMC162616  PMID: 7793884
10.  In vivo antiherpesvirus activity of N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine. 
The efficacy of 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (S2242) was evaluated in several animal models for herpesvirus infections. Compound S2242 was more effective than acyclovir (i) when administered subcutaneously in a model for herpes simplex virus type 1 (HSV-1)-induced mortality in immunocompetent mice and (ii) when applied topically to hairless (hr/hr) mice that had been infected intracutaneously with HSV-2. In SCID (severe combined immune deficient) mice that had been infected with a thymidine kinase-deficient HSV-1 strain, S2242 (administered subcutaneously at a dosage of 50 mg/kg/day) completely protected against virus-induced mortality whereas foscarnet was less effective and acyclovir had no or little protective effect. Compound S2242 was far more effective than ganciclovir in preventing or delaying murine cytomegalovirus-induced mortality in immunocompetent and SCID mice. The compound was more effective when a given dose was fractionated and administered on subsequent days than when this dose was administered in one single injection. A 5-day treatment course with S2242 (10 and 50 mg/kg/day) for newborn mice that had been infected with a lethal dose of murine cytomegalovirus suppressed virus-induced mortality. Compound S2242 had no inhibitory effect on the growth of weanling (at 50 mg/kg for 5 days) and 3- to 4-week-old mice (at doses of 50 to 200 mg/kg for 6 weeks). However, akin to ganciclovir, compound S2242 significantly reduced testicle weight, testicle morphology, and spermatogenesis.
PMCID: PMC162484  PMID: 7695329
11.  The N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine is a potent and selective inhibitor of herpesvirus replication. 
Antimicrobial Agents and Chemotherapy  1994;38(12):2710-2716.
2-Amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (compound S2242) represents the first antivirally active nucleoside analog with the side chain attached to the N-7 position of the purine ring. Compound S2242 strongly inhibits the in vitro replication of both herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) (50% effective concentration [EC50], 0.1 to 0.2 microgram/ml), varicella-zoster virus (EC50, 0.01 to 0.02 microgram/ml) and thymidine kinase (TK)-deficient strains of HSV (EC50, 0.4 microgram/ml) and varicella-zoster virus (EC50, 0.2 to 0.5 microgram/ml). Potent activity was also observed against murine cytomegalovirus (EC50, 1 microgram/ml), human cytomegalovirus (HCMV) (EC50, 0.04 to 0.1 microgram/ml), and human herpesvirus 6 (EC50, 0.0005 microgram/ml). Compound S2242 (i) was not cytotoxic to confluent Vero, HeLa, or human fibroblast cells at concentrations of > 100 micrograms/ml, (ii) proved somewhat more cytostatic to Vero, HEL, HeLa, and C127I cells than ganciclovir, and (iii) was markedly more cytostatic than ganciclovir to the growth of the human lymphocytic cell lines HSB-2 and CEM degrees. In contrast to ganciclovir, (i) compound S2242 proved not to be cytocidal to murine mammary carcinoma (FM3A) cells transfected with the HSV-1 or HSV-2 TK gene, (ii) exogenously added thymidine had only a limited effect on its anti-HSV-1 activity, and (iii) the compound was not phosphorylated by HSV-1-encoded TK derived from HSV-1 TK-transfected FM3A cells, indicating that the compound is not activated by a virally encoded TK. Compound S2242 inhibited (i) the expression of late HCHV antigens at an EC50 of 0.07 microgram/ml (0.6 microgram/ml for ganciclovir) and (ii) HCMV DNA synthesis at an EC50 of 0.1 microgram/ml (0.32 microgram/ml for ganciclovir), i.e., values that are close to the EC50S for inhibition of HCMV-induced cytopathogenicity. Neither ganciclovir nor S2242 had any effect on the expression of immediate-early HCMV antigens, which occurs before viral DNA synthesis. In time-of-addition experiments, S2242 behaved like ganciclovir and acyclovir; i.e., the addition of the drugs could be delayed until the onset of viral DNA synthesis.
PMCID: PMC188274  PMID: 7695251
12.  New tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-one and -thione derivatives are potent inhibitors of human immunodeficiency virus type 1 replication and are synergistic with 2',3'-dideoxynucleoside analogs. 
Antimicrobial Agents and Chemotherapy  1994;38(12):2863-2870.
Tetrahydro-imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-one and -thione (TIBO) derivatives were shown to specifically block human immunodeficiency virus type 1 (HIV-1) replication through a unique interaction with the HIV-1 reverse transcriptase (RT). Through further modification of the lead compounds and structure-activity relationship analysis several new TIBO derivatives that show high potency, selectivity, and specificity against HIV-1 have been obtained. A new TIBO derivative, R86183, inhibits the replication of HIV-1, but not HIV-2, in a variety of CD4+ T-cell lines and peripheral blood lymphocytes, at a concentration of 0.3 to 30 nM, which is at least 4 orders of magnitude lower than the 50% cytotoxic concentration. Whereas an HIV-1 strain containing the Leu-100-->Ile mutation in the RT gene is about 400-fold less susceptible, R86183 still inhibits the replication of an HIV-1 strain containing the Tyr-181-->Cys RT mutation by 50% at a concentration of 130 nM. R86183 inhibits the poly(C).oligo(dG)12-18-directed HIV-1 RT reaction by 50% at a concentration of 57 nM. The antiviral activity of 22 TIBO derivatives in cell culture correlated well with their activity against HIV-1 RT. No such correlation was found for their cytotoxicity. The combination of R86183 with either zidovudine or didanosine resulted in a synergistic inhibition of HIV-1 (strain IIIB) replication. Combination of R86183 with the protease inhibitor Ro31-8959 was found to be additive. Also described is a dilution protocol circumventing overestimation and underestimation of antiviral activity due to adherence to plastic surfaces.
PMCID: PMC188298  PMID: 7535037
13.  Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. 
Bicyclams, in which the cyclam (1,4,8,11-tetraazacyclotetradecane) moieties are tethered via an aliphatic bridge (i.e., propylene, as in JM2763) are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) (E. De Clercq, N. Yamamoto, R. Pauwels, M. Baba, D. Schols, H. Nakashima, J. Balzarini, Z. Debyser, B. A. Murrer, D. Schwartz, D. Thornton, G. Bridger, S. Fricker, G. Henson, M. Abrams, and D. Picker, Proc. Natl. Acad. Sci. USA 89:5286-5290, 1992). We have now found that the bicyclam JM3100, in which the cyclam moieties are tethered by an aromatic bridge [i.e., phenylenebis(methylene)], inhibits the replication of various HIV-1 and HIV-2 strains in various cell lines at a 50% effective concentration (EC50) of 1 to 10 ng/ml, which is about 100-fold lower than the concentration required for JM2763 to inhibit HIV replication and at least 100,000-fold lower than the cytotoxic concentration (> 500 micrograms/ml). In primary T4 lymphocytes or primary monocytes, JM3100 proved inhibitory to HIV-1(IIIB) and several clinical HIV-1 isolates at an EC50 of less than 1 ng/ml. On the basis of time-of-addition experiments, JM3100 appeared to interact with a viral uncoating event, and this was further corroborated by an uncoating assay in which RNase sensitivity of [5-3H]uridine-labeled virions was monitored. In addition, but possibly mechanistically related, JM3100 blocks formation of infectious particles. JM3100 was also found to interfere directly with virus-induced syncytium formation, albeit at a higher concentration (1 to 2 microgram/ml) than that required for inhibition of viral replication. Following subcutaneous injection of 10 mg of JM3100 per kg of body weight to rabbits, anti-HIV activity was detected in serum corresponding to serum drug levels exceeding for at least 6 h by >100-fold the EC(50) required to inhibit HIV replication in vitro. When combined with either 3'-azido-2',3' -dideoxythymidine or 2',3' -dideoxyinosine, JM3100 achieved a additive inhibition of HIV replication, and when repeatedly subcultivated in the presence of JM3100, the virus remained sensitive to the compound for at least 30 passages (120 days) in cell culture.
PMCID: PMC284523  PMID: 7913308
14.  Preclinical evaluation of MKC-442, a highly potent and specific inhibitor of human immunodeficiency virus type 1 in vitro. 
MKC-442 (6-benzyl-1-ethoxymethyl-5-isopropyluracil or I-EBU) has recently been identified as a highly potent and specific inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Since the compound has favorable pharmacokinetic and toxicity profiles in vivo, we have evaluated MKC-442 for its inhibitory effect on the replication of HIV-1 in various cell cultures, including human peripheral blood lymphocytes and monocyte-macrophages. The 50 and 90% effective concentrations for HIV-1 (HTLV-IIIB strain) replication in MT-4 cells were 15 and 98 nM, respectively. MKC-442 was also inhibitory to HIV-1 replication in peripheral blood lymphocytes and monocyte-macrophages as determined by the production of p24 antigens in the culture supernatant. Fluorescence-activated cell sorter analysis revealed that MKC-442 was equally active against zidovudine-resistant mutants and zidovudine-susceptible strains. Furthermore, combinations of MKC-442 with either 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, or 2',3'-dideoxyinosine synergistically inhibited the replication of HIV-1. Thus, MKC-442 has been considered as a candidate for clinical efficacy studies.
PMCID: PMC284526  PMID: 7518216
15.  In vitro and in vivo inhibition of ortho- and paramyxovirus infections by a new class of sulfonic acid polymers interacting with virus-cell binding and/or fusion. 
A series of sulfonic acid polymers were shown to be potent and selective inhibitors of respiratory syncytial virus (RSV) and influenza A virus. The compounds inhibit the replication of RSV and influenza A virus in HeLa and MDCK cells, at concentrations of 0.16 and 4.0 micrograms/ml, respectively, and are nontoxic to growing cells at concentrations of > 100 micrograms/ml. The mode of antiviral action of the sulfonic acid polymers can be ascribed to inhibition of virus-cell fusion (for influenza A virus) or inhibition of both virus-cell binding and fusion (for RSV). The sulfonic acid prototype PAMPS [poly(2-acrylamido-2-methyl-1-propanesulfonic acid)], when administered intranasally to mice as a single dose of 10 or 50 mg per kg of body weight at the time of infection, completely inhibited influenza A virus replication (in lungs) and virus-associated lung consolidation in immunocompetent mice and completely protected NMRI and SCID (severe combined immune deficiency) mice against influenza A virus-associated mortality. When administered 1 h before or after virus inoculation, no protective effect was observed at a dose of 10 or 100 mg/kg. Sulfonic acid polymers exert selective inhibitory effects on RSV and influenza A virus replication.
PMCID: PMC284437  PMID: 8192454
16.  Inhibition of visna virus replication by 2',3'-dideoxynucleosides and acyclic nucleoside phosphonate analogs. 
Antimicrobial Agents and Chemotherapy  1993;37(12):2540-2544.
A series of acyclic nucleoside phosphonate (ANP) and 2',3'-dideoxynucleoside (ddN) derivatives were evaluated for their inhibitory effects on visna virus replication and maedi/visna virus-induced syncytium formation in sheep choroid plexus cells. Most ANP derivatives inhibited virus replication and syncytium formation within a concentration range of 0.2 to 1.8 microM. Among the most active ANP derivatives ranked (R)-9-(2-phosphonomethoxypropyl)adenine, (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine, and (S)-9-(3-fluoro-2-phosphonomethoxypropyl)adenine. Of the ddN derivatives, 2',3'-dideoxycytidine (ddCyd) proved to be the most inhibitory to visna virus-induced syncytium formation (50% effective concentration, 0.02 microM). The purine ddN analogs (i.e., 2',3'-dideoxyinosine, 2',3'-dideoxyadenosine, 2',3'-dideoxyguanosine, and 2,6-diaminopurine-2',3'-dideoxyribosine) were 10- to 30-fold less effective, and the thymidine derivatives 2',3'-didehydro-2',3'-dideoxythymidine (D4T) and 3'-azido-2',3'-dideoxythymidine (AZT) were more than 500-fold less inhibitory to visna virus than ddCyd. The 5'-triphosphate forms of AZT and D4T were 100- to 600-fold more inhibitory to visna virus particle-derived reverse transcriptase than was the 5'-triphosphate of ddCyd. The apparent discrepancy between the inhibitory effects of these ddN derivatives on virus replication and viral reverse transcriptase activity most likely reflects differences in the metabolic conversion of ddCyd versus D4T and AZT in sheep choroid plexus cells.
PMCID: PMC192732  PMID: 7509142
17.  Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. 
The (S)- and (R)-enantiomers of acyclic purine nucleoside phosphonate analogs (i.e., 3-hydroxy-2-phosphonomethoxypropyl [HPMP] derivatives, 3-fluoro-2-phosphonomethoxypropyl [FPMP] derivatives, and 2-phosphonomethoxypropyl [PMP] derivatives of adenine [A], 2-aminopurine, 2,6-diaminopurine [DAP], and guanine [G]) have been synthesized and evaluated for antiviral activity. As a rule, the HPMP derivatives proved effective against DNA viruses but not RNA viruses or retroviruses. In particular, (S)-HPMPA, (S)-HPMPDAP, and (R)- and (S)-HPMPG were exquisitely inhibitory to herpes simplex virus type 1 (50% effective concentrations, 0.63, 0.22, 0.10, and 0.66 microM, respectively). The FPMP and PMP derivatives showed marked inhibitory activities against retroviruses but not DNA viruses. The (S)-enantiomer of FPMPA and the (R)-enantiomer of PMPA were approximately 30- to 100-fold more effective against human immunodeficiency virus and Moloney murine sarcoma virus (MSV) than their enantiomeric counterparts. In contrast, both (S)- and (R)-enantiomers of the DAP and G derivatives proved equally effective against retroviruses, except for (R)-PMPDAP, which was 15- to 40-fold more inhibitory than (S)-PMPDAP. (R)-PMPDAP emerged as the most potent and selective inhibitor of MSV-induced transformation of murine C3H/3T3 cells and human immunodeficiency virus-induced cytopathicity in MT-4 and CEM cells (50% effective concentration, approximately 0.1 to 0.6 microM). When administered intraperitoneally at a single dose as low as 2 mg/kg, (R)-PMPDAP efficiently decreased MSV-induced tumor formation in newborn NMRI mice and significantly increased the survival time of MSV-infected mice. In addition, upon oral administration to MSV-infected mice, (R)-PMPDAP showed marked antiretroviral efficacy.
PMCID: PMC187663  PMID: 8452366
18.  Cell type-specific anti-human immunodeficiency virus type 1 activity of the transactivation inhibitor Ro5-3335. 
Antimicrobial Agents and Chemotherapy  1992;36(12):2628-2633.
The drug Ro5-3335 [7-chloro-5-(2-pyrryl)-3H-1,4-benzodiazepin-2(H)-one] inhibits human immunodeficiency virus type 1 (HIV-1) gene expression at the transcriptional level through interference with Tat-mediated transactivation (M.-C. Hsu, A. D. Schutt, M. Holly, L. W. Slice, M. I. Sherman, D. D. Richman, M. J. Potash, and D. J. Volsky, Science 254:1799-1802, 1991). We confirmed this specific inhibitory effect in a quantitative bioassay based on transactivation of a chimeric gene comprising the HIV-1 long terminal repeat promoter fused to the lacZ gene of Escherichia coli and transfected in a HeLa cell line expressing Tat. Ro5-3335 was found to inhibit HIV-1 long terminal repeat-driven lacZ gene expression at a 50% inhibitory concentration of 0.5 microM. The in vitro anti-HIV-1 activity of Ro5-3335 was highly dependent on the nature of the host cells. The highest selectivity index, 50, was found in phytohemagglutinin-stimulated peripheral blood lymphocytes. The selectivity index was between 1 and 10 in the CD4+ T-cell lines CEM, MOLT-4 (clone 8), and HUT-78. In MT-4 and MT-2 cells, Ro5-3335 had no inhibitory effect on HIV-1 replication. The absence of anti-HIV-1 activity of Ro5-3335 in MT-4 cells was confirmed by using different parameters of virus replication and different multiplicities of infection. In persistently HIV-1-infected HUT-78/IIIB/LAI cells, Ro5-3335 failed to demonstrate any activity at subtoxic concentrations. The cytotoxicity of Ro5-3335 was significantly lower in peripheral blood lymphocytes than in the CD4+ T-cell lines.
PMCID: PMC245518  PMID: 1282790
19.  [2',5'-Bis-O-(tert-butyldimethylsilyl)]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide) (TSAO) derivatives of purine and pyrimidinenucleosides as potent and selective inhibitors of human immunodeficiency virus type 1. 
The [2',5'-bis-O-(tert-butyldimethylsilyl)]-3'-spiro-5''-(4''-amino- 1'',2''-oxathiole-2'',2''-dioxide) (TSAO) derivatives of ribofuranosylthymine, uridine, 5-bromouridine, 5-methylcytidine, inosine, and adenosine are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) but not of other retroviruses (HIV-2, simian immunodeficiency virus, or Moloney murine sarcoma virus). The 50% effective concentration (EC50) of the most active TSAO congeners for inhibition of HIV-1 replication ranged from 0.034 to 0.44 microgram/ml. The 50% cytotoxic concentration (CC50) affecting the viability of MT-4 cells ranged from 2.35 to 18 micrograms/ml. The TSAO thymine derivative proved to be a highly selective inhibitor of HIV-1 reverse transcriptase but not of HIV-2 reverse transcriptase and DNA polymerase alpha. Introduction of an alkyl or alkenyl function at N3 of the thymine ring markedly decreased cytotoxicity but did not affect the antiviral activity of the compounds. The most potent (EC50, 0.034 microgram/ml) and most selective (CC50/EC50, 4088) inhibitor of HIV-1 replication proved to be the N3-methyl derivative of (1-[2',5'-bis-O-(tert-butyldimethylsilyl)beta-D-ribofuranosyl]thymine)- 3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide). This compound should be considered as a promising drug candidate for the treatment of HIV-1 infections.
PMCID: PMC188838  PMID: 1510396
20.  Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. 
Antimicrobial Agents and Chemotherapy  1991;35(12):2515-2520.
Sulfated polysaccharides (i.e., dextran sulfate) and sulfated polymers (i.e., sulfated polyvinylalcohol and sulfated copolymers of acrylic acid with vinylalcohol) were found to be potent and selective inhibitors of the replication of respiratory syncytial virus (RSV) and influenza virus type A (influenza A virus) but not of other myxoviruses (parainfluenza 3, measles, and influenza B viruses). The compounds were also inhibitory to human immunodeficiency virus type 1 (HIV-1) and HIV-2 and simian immunodeficiency virus but not simian AIDS-related virus. The mode of antiviral action of the sulfated polysaccharides and polymers can be attributed to an inhibition of virus binding to the cells (HIV-1), inhibition of virus-cell fusion (influenza A virus), or inhibition of both virus-cell binding and fusion (RSV). The fact that the sulfated polysaccharides and polymers are inhibitory to some myxoviruses and retroviruses but not to others seems to depend on the composition of the amino acid sequences of the viral envelope glycoproteins that are involved in virus-cell binding and fusion. All myxoviruses and retroviruses that are sensitive to the sulfated polysaccharides and polymers share a tripeptide segment (Phe-Leu-Gly). This tripeptide segment may be involved either directly (as a target sequence) or indirectly in the inhibitory effects of the compounds on virus-cell binding and fusion.
PMCID: PMC245423  PMID: 1725692
21.  Inhibitory effects of acyclic nucleoside phosphonate analogs, including (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, on Epstein-Barr virus replication. 
Antimicrobial Agents and Chemotherapy  1991;35(11):2440-2443.
(S)-9-(3-Hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-2,6-diaminopurine [(S)-HPMPDAP], cyclic (S)-HPMPA [(S)-cHPMPA], 9-(2-phosphonylmethoxyethoxyethyl)-2,6-diaminopurine (PMEDAP), and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] were examined for their inhibitory effects on Epstein-Barr virus (EBV) replication. The 50% effective concentrations for inhibition of viral DNA replication were 0.16, 0.03, 2.0, 1.5, and 0.08 microM for PMEDAP, (S)-HPMPC, (S)-HPMPDAP, (S)-cHPMPA, and (S)-HPMPA, respectively. The relative efficacies based on the in vitro therapeutic index was (S)-HPMPC (5,000) greater than PMEDAP (1,000) = (S)-HPMPA (1,000) greater than (S)-cHPMPA (136) greater than (S)-HPMPDAP (78). Certain ratios of combinations of (S)-HPMPC with 3'-azido-3'-deoxythymidine produced a synergistic inhibitory effect on EBV genome replication, but others exhibited an antagonistic effect. These results indicate that this series of acyclic nucleoside phosphonate analogs, and in particular (S)-HPMPC, are potent and selective anti-EBV agents in vitro.
PMCID: PMC245402  PMID: 1666500
22.  Synergistic inhibition of human immunodeficiency virus type 1 replication by 5-ethyl-1-ethoxymethyl-6-(phenylthio)uracil (E-EPU) and azidothymidine in vitro. 
A novel 6-substituted acyclouridine derivative, 5-ethyl-1-ethoxymethyl-6-(phenylthio)uracil (E-EPU), has recently proved to be a highly potent and selective inhibitor of human immunodeficiency virus type 1 (HIV-1) in vitro. Combinations of 3'-azido-2',3'-dideoxythymidine (AZT) and E-EPU synergistically inhibit the replication of HIV-1 in MT-4 cells, whereas the cytotoxic effects of AZT and E-EPU on mock-infected MT-4 cells are not enhanced by the drug combination. Synergistic inhibition of HIV-1 replication has also been observed in peripheral blood lymphocytes. These results indicate that the combination of AZT and E-EPU should be further pursued in the treatment of AIDS.
PMCID: PMC245184  PMID: 1929304
23.  Antiviral activities of 5-ethynyl-1-beta-D-ribofuranosylimidazole-4- carboxamide and related compounds. 
A series of novel compounds, 5-alkynyl-1-beta-D-ribofuranosylimidazole-4- carboxamides, have been identified as broad-spectrum antiviral agents. 5-Ethynyl-1-beta-D-ribofuranosylimidazole-4- carboxamide (EICAR), the most potent congener of the group, showed antiviral potency about 10- to 100-fold greater than that of ribavirin. Similar in spectrum to ribavirin, EICAR was particularly active (50% inhibitory concentration, 0.2 to 4 micrograms/ml) against poxviruses (vaccinia virus), togaviruses (Sindbis and Semliki forest viruses), arenaviruses (Junin and Tacaribe viruses), reoviruses (reovirus type 1), orthomyxoviruses (influenza A and B viruses), and paramyxoviruses (parainfluenza virus type 3, measles virus, subacute sclerosing panencephalitis virus, and respiratory syncytial virus). EICAR was also cytostatic for rapidly growing cells (50% inhibitory concentration, 0.2 to 0.9 microgram/ml). EICAR inhibited vaccinia virus tail lesion formation at doses that were not toxic to the host. EICAR is a candidate antiviral drug for the treatment of pox-, toga-, arena-, reo-, orthomyxo, and paramyxovirus infections.
PMCID: PMC245078  PMID: 2069373
24.  Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine in various models of herpes simplex virus infection in mice. 
The phosphonylmethoxyalkyl derivative (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC) was evaluated for its in vivo efficacy in several model infections for herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and thymidine kinase-deficient (TK-) HSV-1 in mice. In hairless mice infected intracutaneously with HSV-1 or HSV-2, HPMPC completely suppressed all manifestations of the disease (skin lesions, paralysis of the hind legs, and mortality) if it was administered topically at a concentration of as low as 0.1, 0.3, or 1%. Similarly, HPMPC completely suppressed TK- HSV-1 infection in athymic nude mice if it was administered topically at 0.1 or 0.3% or intraperitoneally at 100 or 250 mg/kg/day. HPMPC was also effective against intraperitoneal HSV infection if it was given orally at a dose of 50 mg/kg/day or higher. In mice inoculated intracerebrally with HSV-2, intraperitoneal HPMPC treatment achieved a significant and dose-dependent protection at doses ranging from 5 to 400 mg/kg/day. The protective effect of HPMPC (at 200 mg/kg/day) was accompanied by a complete inhibition of virus multiplication in the brain. In all models of infections studied, the efficacy of HPMPC proved to be superior to that of acyclovir. The most remarkable feature of HPMPC was that a single administration of the compound, even as late as 4 days after infection, conferred significant protection against HSV-1 or HSV-2 infection. Topical or systemic HPMPC treatment is efficacious in murine models of HSV-1, HSV-2, and TK- HSV infections.
PMCID: PMC245082  PMID: 2069375
25.  Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. 
The alpha-(1-3)-D-mannose- and alpha-(1-6)-D-mannose-specific agglutinins (lectins) from Galanthus nivalis, Hippeastrum hybrid, Narcissus pseudonarcissus, and Listera ovata inhibited infection of MT-4 cells by human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and simian immunodeficiency virus at concentrations comparable to the concentrations at which dextran sulfate (molecular weight, 5,000 [DS-5000]) inhibits these viruses (50% effective concentration, 0.2 to 0.6 microgram/ml). Unlike DS-5000, however, the plant lectins did not inhibit the replication of other enveloped viruses, except for human cytomegalovirus (50% effective concentration, 0.9 to 1.6 microgram/ml). The plant lectins suppressed syncytium formation between persistently HIV-1- or HIV-2-infected HUT-78 cells and uninfected MOLT-4 (clone 8) cells at concentrations that were 5- to 10-fold lower than that required for DS-5000. Unlike DS-5000, however, the plant lectins did not inhibit HIV-1 binding to CD4+ cells. Combination of the plant lectins with DS-5000 led to a potent synergistic inhibition of HIV-1-induced cytopathogenicity in MT-4 cells and syncytium formation between HIV-infected HUT-78 cells and MOLT-4 cells. Our data suggest that alpha-(1-3)-D- and alpha-(1-6)-D-mannose-specific plant lectins interfere with an event in the HIV replicative cycle that is subsequent to the attachment of the virions to the cells (i.e., the fusion process).
PMCID: PMC245024  PMID: 1645507

Results 1-25 (56)