PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (56)
 

Clipboard (0)
None
Journals
Year of Publication
more »
Document Types
1.  Antiviral drug susceptibility of human herpesvirus 8. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2754-2756.
We studied the susceptibility of human herpesvirus 8 (HHV-8) to a number of antiherpesvirus agents. The acyclic nucleoside phosphonate (ANP) analogs cidofovir and HPMPA [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)adenine] effected potent inhibition of HHV-8 DNA synthesis, with 50% effective concentrations (EC50) of 6.3 and 0.6 microM, respectively. Adefovir, an ANP with both antiretrovirus and antiherpesvirus activity, blocked HHV-8 DNA replication at a fourfold-lower concentration than did foscarnet (EC50 of 39 and 177 microM, respectively). The most potent inhibitory effect was obtained with the N-7-substituted nucleoside analog S2242 (EC50, 0.11 microM). The nucleoside analogs acyclovir, penciclovir, H2G ((R)-9-[4-hydroxy-2-(hydroxymethyl) butyl]guanine), and brivudine had weak to moderate effects (EC50 of > or =75, 43, 42, and 24 microM, respectively, and EC90 of > or =75 microM), whereas ganciclovir elicited pronounced anti-HHV-8 activity (EC50, 8.9 microM).
PMCID: PMC164202  PMID: 9420052
2.  Sensitivity of human immunodeficiency virus to bicyclam derivatives is influenced by the three-dimensional structure of gp120. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2616-2620.
The bicyclams are a new class of anti-human immunodeficiency virus (anti-HIV) compounds targeted at viral entry. From marker rescue experiments, it appears that the envelope gp120 glycoprotein plays an important role in the anti-HIV activity of the bicyclams. Bicyclam-resistant strains contain a number of amino acid changes scattered over the V2 to V5 region of gp120. Experiments aimed at estimating the relative importance of particular amino acid changes with regard to the overall resistance pattern are described. The sequences of some partially bicyclam-resistant virus strains, obtained during the resistance development process, were analyzed, and the corresponding 50% effective concentrations were determined. Selected mutations observed in bicyclam-resistant strains were introduced in the wild-type background by site-directed mutagenesis. In addition, some amino acids were back-mutated to their wild-type counterparts in an otherwise JM3100-resistant strain. The sensitivities of these mutant viruses to bicyclams were determined. Construction of chimeric viruses, carrying the V3 loop of JM3100-resistant virus in a wild-type HIV type 1 HXB2 background, enabled us to investigate the importance of the mutations in the V3 loop of JM3100-resistant virus. From the results described in the report, it can be concluded that single amino acid substitutions do not influence the observed resistance to JM3100. Also, the mutations in the V3 loop are not sufficient to engender even a partially resistant phenotype. We postulate that the overall conformation of gp120 determines the degree of sensitivity or resistance of HIV strains to bicyclams.
PMCID: PMC164179  PMID: 9420029
3.  Antiretroviral activities of acyclic nucleoside phosphonates [9-(2-phosphonylmethoxyethyl)adenine, 9-(2-phosphonylmethoxyethyl)guanine, (R)-9-(2-phosphonylmethoxypropyl)adenine, and MDL 74,968] in cell cultures and murine sarcoma virus-infected newborn NMRI mice. 
From a side-by-side comparative study, the acyclic nucleoside phosphonates (R)-9-(2-phosphonylmethoxypropyl)adenine [(R)-PMPA] and 9-(2-methylidene-3-phosphonomethoxypropyl)guanine (MDL 74,968) proved more selective in their inhibitory effect on human immunodeficiency virus types 1 and 2, feline immunodeficiency virus, and Moloney murine sarcoma virus (MSV) in cell cultures than the 9-(2-phosphonylmethoxyethyl) derivatives of adenine (PMEA) and guanine (PMEG). In particular, PMEG proved quite toxic. PMEA, (R)-PMPA, and MDL 74,968 afforded a marked delay in MSV-induced tumor initiation in MSV-infected newborn NMRI mice and substantially delayed associated animal death at doses as low as 4 to 10 mg/kg of body weight. Treatment of the NMRI mice with PMEA, (R)-PMPA, and MDL 74,968 at 25 or 50 mg/kg resulted in a high percentage of long-term survivors.
PMCID: PMC163760  PMID: 9056002
4.  Activities of various compounds against murine and primate polyomaviruses. 
Polyomavirus infections in humans are due to BK virus (BKV) and JC virus (JCV). Diseases associated with human polyomaviruses occur mostly in immunocompromised adults, e.g., progressive multifocal leukoencephalopathy (PML), caused by JCV, in AIDS patients and hemorrhagic cystitis and uretral stenosis, caused by BKV, in transplant recipients. No therapy is available for these diseases, which necessitates the development of chemical entities that are active against polyomaviruses. Several antiviral compounds were evaluated to determine their effects on the in vitro replication of mouse polyomavirus and the primate viruses simian virus 40 (SV40), SV40 PML-1, and SV40 PML-2. The activity of the different compounds was assessed by a cytopathic effect reduction assay and confirmed in a virus yield assay. Cidofovir [HPMPC; (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] and its cyclic counterpart emerged as the most selective antipolyomavirus agents. The 50% inhibitory concentrations for HPMPC were in the range of 4 to 7 micrograms/ml, and its selectivity index varied from 11 to 20 for mouse polyomavirus and from 23 to 33 for SV40 strains in confluent cell monolayers. Cell cytotoxicity was up to 15-fold greater in growing cells. Other acyclic nucleoside phosphonates (i.e., HPMPA; [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine] and PMEG [9-(2-phosphonylmethoxyethyl)-guanine]) also showed some activity but had low selectivity. None of the other drugs tested against these animal viruses (i.e., acyclovir, ganciclovir, brivudine, ribavirin, foscarnet, and cytarabine) showed significant activity. Thus, HPMPC deserves further evaluation as a candidate drug for polyomavirus infections in the immunocompromised host.
PMCID: PMC163756  PMID: 9055998
5.  Identification of novel thiocarboxanilide derivatives that suppress a variety of drug-resistant mutant human immunodeficiency virus type 1 strains at a potency similar to that for wild-type virus. 
A large variety of carboxanilide and thiocarboxanilide derivatives in which the original oxathiin or aliphatic moieties present in the prototype compounds UC84 and UC38 were replaced by an (un) substituted furanyl, thienyl, phenyl, or pyrrole entity have been evaluated for activity against wild-type human immunodeficiency virus type 1 strain IIIB [HIV-1 (IIIB)] and a series of mutant virus strains derived thereof. The mutant viruses contained either the Leu-100-->Ile, Lys-103-->Asn, Val-106-->Ala, Glu-138-->Lys, Tyr-181-->Cys, or Tyr-188-->Leu mutation in their reverse transcriptase. Several 3-(2-methylfuranyl)- and 3-(2-methylthienyl)-thiocarboxanilide ester, (thio)ether, and oxime ether derivatives showed exquisitely potent antiviral activity against wild-type HIV-1 (50% effective concentration, 0.009 to 0.021 microM). The pentenylethers of the 2-methylfuranyl and 2-methylthienyl derivatives (i.e., 313, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]- 2-methyl-3-furancarbothioamide or UC-781, and 314, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl] -2-methyl-3-thiophenecarbothioamide or UC-82) proved virtually equally inhibitory for wild-type and the Ile-100, Ala-106, and Lys-138 mutant virus strains (50% effective concentration, 0.015 to 0.021 microM). Their inhibitory effect against the Asn-103 and Cys-181 reverse transcriptase mutant virus strains was decreased only four- to sevenfold compared with wildtype virus. UC-781 and UC-82 should be considered potential candidate drugs for the treatment of HIV-1-infected individuals.
PMCID: PMC163349  PMID: 8726019
6.  Antiretroviral activity and pharmacokinetics in mice of oral bis(pivaloyloxymethyl)-9-(2-phosphonylmethoxyethyl)adenine, the bis(pivaloyloxymethyl) ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine. 
Lipophilic ester prodrugs of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), i.e., bis(pivaloyloxymethyl)-PMEA [bis(POM)-PMEA] and diphenyl-PMEA, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antiviral agent. The antiretroviral efficacy was determined in severe combined immune deficiency (SCID) mice infected with Moloney murine sarcoma virus (MSV). They were treated twice daily for 5 days after infection. Oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg of body weight per day proved markedly effective in delaying MSV-induced tumor formation and death of the mice. Oral bis(POM)-PMEA afforded anti-MSV efficacy equal to that of subcutaneous PMEA given at equimolar doses. Oral treatment with PMEA or diphenyl-PMEA proved less efficient. Similarly, in mice infected with Friend leukemia virus (FLV), oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg per day effected a marked inhibition of FLV-induced splenomegaly (87 and 48% inhibition, respectively), the efficacy being equal to that of PMEA given subcutaneously at equivalent doses. Pharmacokinetic experiments with mice showed that the oral bioavailabilities of PMEA following oral gavage of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 50 mg of PMEA per kg) were 53,3, and 16%, respectively. These data were calculated from the levels of free PMEA in plasma. Also, the recoveries of free PMEA in the urine upon oral administration of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 25 mg of PMEA per kg) were 48, 4, and 7%, respectively. Oral bis(POM)-PMEA was not recovered from plasma, suggesting that it was readily cleaved to free PMEA. In contrast, diphenyl-PMEA was not efficiently cleaved to free PMEA, resulting in a rather low oral bioavailability of PMEA from this prodrug. Bis(POM)-PMEA appears to be an efficient oral prodrug of PMEA that deserves further clinical evaluation in human immunodeficiency virus-infected individuals.
PMCID: PMC163050  PMID: 8787873
7.  Susceptibilities of several drug-resistant herpes simplex virus type 1 strains to alternative antiviral compounds. 
Resistant herpes simplex virus type 1 strains were obtained under the selective pressure of acyclovir, ganciclovir, bromovinyldeoxyuridine, foscarnet, 2-phosphonylmethoxyehtyl (PME) derivatives of adenine and 2,6-diaminopurine, 3-hydroxy-2-phosphonylmethoxypropyl derivatives of adenine and cytosine, and 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine (S2242). The drug susceptibility profiles of resistant strains point to differences in the modes of action of PME and 3-hydroxy-2-phosphonylmethoxypropyl derivatives and common mechanisms of action of foscarnet, S2242, and PME derivatives against herpes simplex virus type 1 replication.
PMCID: PMC162798  PMID: 7492121
8.  Differential activities of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives against different human immunodeficiency virus type 1 mutant strains. 
A series of 23 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives that were highly potent inhibitors of wild-type human immunodeficiency virus type 1 strain IIIB (HIV-1/IIIB) replication in CEM cells were evaluated against a panel of HIV-1 mutant strains containing the replacement of leucine by isoleucine at position 100 (100-Leu-->Ile), 103-Lys-->Asn, 106-Val-->Ala, 138-Glu-->Lys, 181-Tyr-->Cys, 181-Tyr-->Ile, or 188-Tyr-->His in their reverse transcriptase (RT). A different structure-antiviral activity relationship was found, depending on the nature of the mutated amino acid in the HIV-1 RT. The results show that 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylbenzyl)uracil, 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)uracil, and 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)-2-thiouracil remain active against the majority of viruses containing single mutations which confer resistance to nonnucleoside RT inhibitors.
PMCID: PMC162671  PMID: 7540384
9.  (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine is a potent inhibitor of feline immunodeficiency virus infection. 
The antiviral efficacy of acyclic nucleoside phosphonates, including 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine [(R)-PMPDAP] against feline immunodeficiency virus (FIV) infection was determined. (R)-PMPDAP showed the highest selectivity index (> 2,000) in vitro. Treatment of experimentally FIV-infected asymptomatic cats with PMEA or (R)-PMPDAP had no effect on the CD4+/CD8+ ratio. However, mean plasma viral RNA concentrations decreased significantly in the (R)-PMPDAP-treated cats. Our data show that, in comparison to PMEA, (R)-PMPDAP is a more potent and less toxic inhibitor of FIV replication both in vitro and in vivo.
PMCID: PMC162616  PMID: 7793884
10.  In vivo antiherpesvirus activity of N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine. 
The efficacy of 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (S2242) was evaluated in several animal models for herpesvirus infections. Compound S2242 was more effective than acyclovir (i) when administered subcutaneously in a model for herpes simplex virus type 1 (HSV-1)-induced mortality in immunocompetent mice and (ii) when applied topically to hairless (hr/hr) mice that had been infected intracutaneously with HSV-2. In SCID (severe combined immune deficient) mice that had been infected with a thymidine kinase-deficient HSV-1 strain, S2242 (administered subcutaneously at a dosage of 50 mg/kg/day) completely protected against virus-induced mortality whereas foscarnet was less effective and acyclovir had no or little protective effect. Compound S2242 was far more effective than ganciclovir in preventing or delaying murine cytomegalovirus-induced mortality in immunocompetent and SCID mice. The compound was more effective when a given dose was fractionated and administered on subsequent days than when this dose was administered in one single injection. A 5-day treatment course with S2242 (10 and 50 mg/kg/day) for newborn mice that had been infected with a lethal dose of murine cytomegalovirus suppressed virus-induced mortality. Compound S2242 had no inhibitory effect on the growth of weanling (at 50 mg/kg for 5 days) and 3- to 4-week-old mice (at doses of 50 to 200 mg/kg for 6 weeks). However, akin to ganciclovir, compound S2242 significantly reduced testicle weight, testicle morphology, and spermatogenesis.
PMCID: PMC162484  PMID: 7695329
11.  New tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-one and -thione derivatives are potent inhibitors of human immunodeficiency virus type 1 replication and are synergistic with 2',3'-dideoxynucleoside analogs. 
Antimicrobial Agents and Chemotherapy  1994;38(12):2863-2870.
Tetrahydro-imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-one and -thione (TIBO) derivatives were shown to specifically block human immunodeficiency virus type 1 (HIV-1) replication through a unique interaction with the HIV-1 reverse transcriptase (RT). Through further modification of the lead compounds and structure-activity relationship analysis several new TIBO derivatives that show high potency, selectivity, and specificity against HIV-1 have been obtained. A new TIBO derivative, R86183, inhibits the replication of HIV-1, but not HIV-2, in a variety of CD4+ T-cell lines and peripheral blood lymphocytes, at a concentration of 0.3 to 30 nM, which is at least 4 orders of magnitude lower than the 50% cytotoxic concentration. Whereas an HIV-1 strain containing the Leu-100-->Ile mutation in the RT gene is about 400-fold less susceptible, R86183 still inhibits the replication of an HIV-1 strain containing the Tyr-181-->Cys RT mutation by 50% at a concentration of 130 nM. R86183 inhibits the poly(C).oligo(dG)12-18-directed HIV-1 RT reaction by 50% at a concentration of 57 nM. The antiviral activity of 22 TIBO derivatives in cell culture correlated well with their activity against HIV-1 RT. No such correlation was found for their cytotoxicity. The combination of R86183 with either zidovudine or didanosine resulted in a synergistic inhibition of HIV-1 (strain IIIB) replication. Combination of R86183 with the protease inhibitor Ro31-8959 was found to be additive. Also described is a dilution protocol circumventing overestimation and underestimation of antiviral activity due to adherence to plastic surfaces.
Images
PMCID: PMC188298  PMID: 7535037
12.  [2',5'-Bis-O-(tert-butyldimethylsilyl)]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide) (TSAO) derivatives of purine and pyrimidinenucleosides as potent and selective inhibitors of human immunodeficiency virus type 1. 
The [2',5'-bis-O-(tert-butyldimethylsilyl)]-3'-spiro-5''-(4''-amino- 1'',2''-oxathiole-2'',2''-dioxide) (TSAO) derivatives of ribofuranosylthymine, uridine, 5-bromouridine, 5-methylcytidine, inosine, and adenosine are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) but not of other retroviruses (HIV-2, simian immunodeficiency virus, or Moloney murine sarcoma virus). The 50% effective concentration (EC50) of the most active TSAO congeners for inhibition of HIV-1 replication ranged from 0.034 to 0.44 microgram/ml. The 50% cytotoxic concentration (CC50) affecting the viability of MT-4 cells ranged from 2.35 to 18 micrograms/ml. The TSAO thymine derivative proved to be a highly selective inhibitor of HIV-1 reverse transcriptase but not of HIV-2 reverse transcriptase and DNA polymerase alpha. Introduction of an alkyl or alkenyl function at N3 of the thymine ring markedly decreased cytotoxicity but did not affect the antiviral activity of the compounds. The most potent (EC50, 0.034 microgram/ml) and most selective (CC50/EC50, 4088) inhibitor of HIV-1 replication proved to be the N3-methyl derivative of (1-[2',5'-bis-O-(tert-butyldimethylsilyl)beta-D-ribofuranosyl]thymine)- 3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide). This compound should be considered as a promising drug candidate for the treatment of HIV-1 infections.
PMCID: PMC188838  PMID: 1510396
13.  Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. 
Antimicrobial Agents and Chemotherapy  1991;35(12):2515-2520.
Sulfated polysaccharides (i.e., dextran sulfate) and sulfated polymers (i.e., sulfated polyvinylalcohol and sulfated copolymers of acrylic acid with vinylalcohol) were found to be potent and selective inhibitors of the replication of respiratory syncytial virus (RSV) and influenza virus type A (influenza A virus) but not of other myxoviruses (parainfluenza 3, measles, and influenza B viruses). The compounds were also inhibitory to human immunodeficiency virus type 1 (HIV-1) and HIV-2 and simian immunodeficiency virus but not simian AIDS-related virus. The mode of antiviral action of the sulfated polysaccharides and polymers can be attributed to an inhibition of virus binding to the cells (HIV-1), inhibition of virus-cell fusion (influenza A virus), or inhibition of both virus-cell binding and fusion (RSV). The fact that the sulfated polysaccharides and polymers are inhibitory to some myxoviruses and retroviruses but not to others seems to depend on the composition of the amino acid sequences of the viral envelope glycoproteins that are involved in virus-cell binding and fusion. All myxoviruses and retroviruses that are sensitive to the sulfated polysaccharides and polymers share a tripeptide segment (Phe-Leu-Gly). This tripeptide segment may be involved either directly (as a target sequence) or indirectly in the inhibitory effects of the compounds on virus-cell binding and fusion.
PMCID: PMC245423  PMID: 1725692
14.  Antiviral activities of 5-ethynyl-1-beta-D-ribofuranosylimidazole-4- carboxamide and related compounds. 
A series of novel compounds, 5-alkynyl-1-beta-D-ribofuranosylimidazole-4- carboxamides, have been identified as broad-spectrum antiviral agents. 5-Ethynyl-1-beta-D-ribofuranosylimidazole-4- carboxamide (EICAR), the most potent congener of the group, showed antiviral potency about 10- to 100-fold greater than that of ribavirin. Similar in spectrum to ribavirin, EICAR was particularly active (50% inhibitory concentration, 0.2 to 4 micrograms/ml) against poxviruses (vaccinia virus), togaviruses (Sindbis and Semliki forest viruses), arenaviruses (Junin and Tacaribe viruses), reoviruses (reovirus type 1), orthomyxoviruses (influenza A and B viruses), and paramyxoviruses (parainfluenza virus type 3, measles virus, subacute sclerosing panencephalitis virus, and respiratory syncytial virus). EICAR was also cytostatic for rapidly growing cells (50% inhibitory concentration, 0.2 to 0.9 microgram/ml). EICAR inhibited vaccinia virus tail lesion formation at doses that were not toxic to the host. EICAR is a candidate antiviral drug for the treatment of pox-, toga-, arena-, reo-, orthomyxo, and paramyxovirus infections.
PMCID: PMC245078  PMID: 2069373
15.  Broad-spectrum antiviral activities of neplanocin A, 3-deazaneplanocin A, and their 5'-nor derivatives. 
The neplanocin A analogs, 3-deazaneplanocin A, 9-(trans-2',trans-3'-dihydroxycyclopent-4'-enyl)adenine (DHCA), and 9-(trans-2',trans-3'-dihydroxycyclopent-4'-enyl)-3-deazaadenine (DHCDA), all potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase, were studied for their broad-spectrum antiviral potential. 3-Deazaneplanocin A, DHCA, and DHCDA proved specifically effective against vesicular stomatitis virus, vaccinia virus, parainfluenza virus, reovirus, and rotavirus. Their selectivity was greater than that of neplanocin A, particularly against vesicular stomatitis virus and rotavirus. As could be expected from adenosine analogs that are directly targeted at AdoHcy hydrolase, 3-deazaneplanocin A, DHCA, and DHCDA were fully active in adenosine kinase-deficient cells, implying that their activity did not depend on phosphorylation by adenosine kinase. None of the AdoHcy hydrolase inhibitors showed selective activity against human immunodeficiency virus (type 1). 3-Deazaneplanocin A at a dose of 0.5 mg/kg per day conferred marked protection against a lethal infection of newborn mice with vesicular stomatitis virus.
PMCID: PMC172642  PMID: 2552906
16.  Efficacy of phosphonylmethoxyalkyl derivatives of adenine in experimental herpes simplex virus and vaccinia virus infections in vivo. 
The phosphonylmethoxyalkyl derivatives (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], 9-(2-phosphonylmethoxyethyl)adenine (PMEA), and 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) were evaluated for their in vivo efficacies in several animal model infections, i.e., mice infected intravenously with vaccinia virus and mice infected intracutaneously, intraperitoneally, or intracerebrally with herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) or thymidine kinase-deficient (TK-) HSV-1. (S)-HPMPA inhibited the development of tail lesions caused by vaccinia virus if it was administered intraperitoneally or subcutaneously at a dosage as low as 5 mg/kg per day. All three compounds completely suppressed the development of skin lesions and the mortality associated therewith in hairless or athymic nude mice inoculated intracutaneously with HSV-1 or TK- HSV-1, if they were administered topically at a concentration as low as 0.1%; when (S)-HPMPA was applied topically at a concentration of greater than or equal to 0.3%, it completely abrogated mortality resulting from intracutaneous HSV-2 infection. Most dramatic were the effects shown by the compounds in mice inoculated intracerebrally with HSV-1, HSV-2, or TK- HSV-1, in which all three compounds given intraperitoneally at a dose of 50 or 100 mg/kg per day effected a significant reduction in the mortality rate of HSV-1-infected mice. The mortality of mice infected intracerebrally with HSV-2 or TK- HSV-1 was significantly reduced even when (S)-HPMPA was given at doses as low as 10 mg/kg per day. These data point to the great potential of the phosphonylmethoxyalkylpurines for both topical and parenteral treatment of HSV-1, HSV-2, and TK- HSV-1 infections.
Images
PMCID: PMC171454  PMID: 2719463
17.  (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, a potent and selective inhibitor of human cytomegalovirus replication. 
Antimicrobial Agents and Chemotherapy  1988;32(12):1839-1844.
From a series of phosphonylmethoxyalkylpurine and -pyrimidine derivatives, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] emerged as a particularly potent and selective inhibitor of the replication of human cytomegalovirus (CMV). Its potency against CMV was similar to that of the structurally related adenine derivative (S)-HPMPA but higher than that of the reference compounds phosphonoformate and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG). The minimum concentrations of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC required to inhibit CMV plaque formation by 50% were 15, 0.7, 0.1, and 0.07 microgram/ml, respectively. The selectivity indices of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC, as determined by the ratio of the 50% inhibitory concentration for cell growth to the 50% inhibitory concentration for plaque formation for CMV (AD-169 strain), were 14, 150, 200 and 1,500, respectively. Corresponding values for the CMV Davis strain were 20, 200, 100, and 1,000, respectively. (S)-HPMPC was inhibitory to CMV plaque formation even when added to the cells at 24 or 48 h postinfection. When (S)-HPMPC was added immediately postinfection, a 24- or 48-h incubation time sufficed to obtain a marked inhibitory effect on CMV replication. Such limited incubation time was insufficient for DHPG to achieve any protection against CMV.
PMCID: PMC176029  PMID: 2854454
18.  Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. 
A study of the structure-activity relationship of a series of newly synthesized phosphonylmethoxyalkyl purine and pyrimidine derivatives revealed that several adenine derivatives substituted at the N9 position by a 2-phosphonylmethoxyethyl (PME) group inhibited human immunodeficiency virus (HIV)-induced cytopathogenicity and HIV antigen expression in vitro at concentrations significantly below the toxicity threshold for the host cells. In terms of anti-HIV potency in MT-4 cells, the PME 2,6-diaminopurine derivative (50% effective dose [ED50], 1 microM) ranked first, followed by the PME adenine derivative (ED50, 2 microM [MT-4]) and the PME 2-monoaminopurine derivative (ED50, 45 microM). Antiretroviral activity was also demonstrated in ATH8 and H9 cells, which were de novo infected with HIV, and extended to C3H mouse fibroblasts infected with Moloney murine sarcoma virus. Unlike 2',3'-dideoxyadenosine, these compounds were not found to be degraded by deaminases derived from bovine intestine.
PMCID: PMC172337  PMID: 2847636
19.  Ribavirin antagonizes inhibitory effects of pyrimidine 2',3'-dideoxynucleosides but enhances inhibitory effects of purine 2',3'-dideoxynucleosides on replication of human immunodeficiency virus in vitro. 
Antimicrobial Agents and Chemotherapy  1987;31(10):1613-1617.
The combined antiviral effects of various 2',3'-dideoxynucleosides and ribavirin on the replication of human immunodeficiency virus type 1 in MT-4 cells have been examined. Ribavirin antagonized the antiviral activity of the pyrimidine 2',3'-dideoxynucleosides (3'-azido-2',3'-dideoxythymidine, 2',3'-dideoxythymidin-2'-ene, 2',3'-dideoxycytidine, and 2',3'-dideoxycytidin-2'-ene), but enhanced the antiviral activity of the purine 2',3'-dideoxynucleosides (2',3'-dideoxyadenosine and 2',3'-dideoxyguanosine). Combinations of the 2',3'-dideoxynucleosides with each other were also examined. These combinations resulted in an additive to subsynergistic effect.
PMCID: PMC175001  PMID: 3435108
20.  Inhibitory effects of antiviral compounds on respiratory syncytial virus replication in vitro. 
We examined the inhibitory effect of 20 antiviral compounds, including ribavirin, on the replication of respiratory syncytial virus in HeLa and HEp-2 cell cultures. Of the compounds studied, pyrazofurin and 3-deazaguanine emerged as more potent inhibitors of respiratory syncytial virus than ribavirin. Based on their inhibitory effect on the cytopathogenicity of respiratory syncytial virus in HeLa cells, the average 50% effective dose of pyrazofurin and 3-deazaguanine for eight strains was 0.07 and 1.65 micrograms/ml, respectively; that of ribavirin was 5.82 micrograms/ml. The cytotoxicity of these compounds for HeLa cells was examined by monitoring the incorporation of radiolabeled uridine into cellular RNA. The selectivity indexes of pyrazofurin and 3-deazaguanine exceeded that of ribavirin by 70- and 11-fold, respectively. Pyrazofurin, 3-deazaguanine, and ribavirin inhibited both viral antigen expression and syncytium formation in HeLa cell cultures, as assessed by an indirect immunofluorescence assay. In these assays, pyrazofurin and 3-deazaguanine again proved more potent than ribavirin. 2,5-Diamidinoindole and carbodine were less potent than ribavirin. Various other compounds, i.e., 3-adenin-9-yl-2-hydroxypropanoic acid isobutyl ester, 3-deazauridine, 3'-C-methyluridine, 5'-deoxy-5-fluorouridine, 5-cyanoimidazole-4-carboxamide, and its ribofuranosyl derivative, did not inhibit the cytopathic effect of the Long strain of respiratory syncytial virus at concentrations greater than or equal to 125 micrograms/ml. Tubercidin, 5-chlorotubercidin, xylotubercidin, neplanocin A, thiosemicarbazone R, and 3-methylquercetine were too toxic to HeLa cells for their inhibitory effects on respiratory syncytial virus to be examined.
PMCID: PMC174908  PMID: 3307618
21.  Selective inhibitory effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 2'-nor-cyclic GMP on adenovirus replication in vitro. 
The inhibitory effects of 20 selected antiviral compounds on the replication of adenoviruses (types 1 to 8) in vitro were investigated. While 18 compounds were ineffective, 2 compounds, namely (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA] and 9-[(2-hydroxy-1,3,2-dioxaphosphorinan-5-yl)oxymethyl]guanine P-oxide (2'-nor-cyclic GMP), were highly effective against all adenovirus types assayed in human embryonic fibroblast cultures. Their 50% inhibitory doses were 1.1 microgram/ml for (S)-HPMPA and 4.1 micrograms/ml for 2'-nor-cyclic GMP. They were nontoxic for the host cells at the effective antiviral doses.
PMCID: PMC174721  PMID: 3566256
22.  Characterization of a varicella-zoster virus variant with altered thymidine kinase activity. 
A varicella-zoster virus (VZV) strain resistant to 5-iodo-2'-deoxyuridine (IdUrd) and 5-bromo-2'-deoxyuridine (BrdUrd) but sensitive to (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdUrd) and (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVdUrd) was isolated. The 2'-deoxythymidine (dThd) kinase of this mutant (Ito) strain was characterized; it was much less efficient in phosphorylating dThd, 2'-deoxycytidine, and BrdUrd than were the dThd kinases from wild-type (CaQu, Kobayashi) VZV strains. The Ito dThd kinase had a markedly decreased affinity for dThd, 2'-deoxycytidine, and BrdUrd but only a slightly decreased affinity for IVdUrd than had the wild-type VZV dThd kinase. BrdUrd was incorporated to a much lesser extent in VZV (Ito strain)-infected cells than wild-type VZV-infected cells, but IVdUrd was incorporated in Ito VZV-infected cells as efficiently as in wild-type VZV-infected cells. While resistant to IdUrd and BrdUrd, the Ito strain was susceptible to inhibitors of de novo thymidylate biosynthesis such as aminopterin.
PMCID: PMC180499  PMID: 3015014
23.  Prolonged herpes simplex virus latency in vitro after treatment of infected cells with acyclovir and human leukocyte interferon. 
We previously demonstrated that herpes simplex virus type 1 (HSV-1) can be established in a latent form in vitro by the treatment of HSV-infected human cells with (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) in combination with human leukocyte interferon (IFN-alpha). We now report that the substitution of BVDU with 9-[(2-hydoxyethoxy)methyl]guanine (acyclovir; ACV) during a combined treatment with IFN-alpha inhibited HSV-1 replication and established in vitro virus latency that could be maintained for a longer period after inhibitor removal and a continued incubation at 37 degrees C. By contrast, the treatment of HSV-1-infected cells with combined IFN-alpha and 9-(1,3-dihydroxy-2-propoxymethyl)guanine, a congener of ACV, failed to establish in vitro virus latency. Furthermore, none of these inhibitors used alone was sufficient to establish in vitro virus latency. The use of nucleoside analogs differing from BVDU in their modes of action has enabled us to initiate studies designed to extend in vitro virus latency.
Images
PMCID: PMC180447  PMID: 3010847
24.  Synergistic antiviral effects of antiherpes compounds and human leukocyte interferon on varicella-zoster virus in vitro. 
The four antiherpes compounds acyclovir, adenine arabinoside, bromovinyldeoxyuridine, and phosphonoformic acid showed an additive to synergistic effect with human leukocyte interferon in inhibiting focus formation by three different strains of varicella-zoster virus in human embryonic fibroblasts.
PMCID: PMC185568  PMID: 6329083
25.  Effects of (E)-5-(2-bromovinyl)-2'-deoxyuridine on proliferation of human fibroblasts, peripheral blood mononuclear cells, and granulocyte-monocyte progenitor cells in vitro. 
Inhibition of human fibroblasts, granulocyte-monocyte progenitor cells, and lymphocytes was observed at (E)-5-(2-bromovinyl)-2'-deoxyuridine concentrations ranging from 21 to 197 micrograms/ml. These concentrations were 10- to 100-fold above usual serum concentrations after oral administration. (E)-5-(2-Bromovinyl)-2'-deoxyuridine compares favorably with currently used antivirals in terms of in vitro myelotoxicity and immunotoxicity.
PMCID: PMC185945  PMID: 6660853

Results 1-25 (56)