Search tips
Search criteria

Results 1-25 (72)

Clipboard (0)
Year of Publication
more »
1.  Acquired Gentamicin Resistance by Permeability Impairment in Enterococcus faecalis 
Antimicrobial Agents and Chemotherapy  2006;50(11):3615-3621.
Enterococci are intrinsically resistant to low levels of aminoglycosides. We previously selected in vitro and in vivo Enterococcus faecalis with intermediate-level resistance to gentamicin that did not abolish synergism with a cell-wall-active agent (E. Aslangul et al., Antimicrob. Agents Chemother. 49:4144-4148, 2005). The aim of this study was to investigate the mechanism of resistance to gentamicin in the 1688-G3 third-step mutant (MIC, 512 μg/ml) of E. faecalis JH2-2. No mutations were found in the genes for L6 ribosomal protein and the four copies of 16S rRNA. Production of a known aminoglycoside-modifying enzyme was unlikely due to the distinct resistance phenotype and absence of the corresponding genes. Efflux was also unlikely since ethidium bromide MICs were similar for JH2-2 and 1688-G3 and since the pump inhibitors reserpine and verapamil had no effect on gentamicin resistance in both strains. To study gentamicin accumulation, we developed a nonisotopic method based on a fluorescent polarization immunoassay. Impaired gentamicin accumulation was observed in 1688-G3 compared to JH2-2 and was only partially reversible by the N,N′-dicyclohexylcarbodiimide (DCCD) uncoupler agent. The lower sensitivity of 1688-G3 to DCCD suggested alteration of the FoF1-ATPase. However, no mutations were detected in the structural genes (atp) for the Fo channel and no difference in transcript levels of atpB and atpE was found between 1688-G3 and JH2-2. Our data are compatible with acquisition of intermediate-level gentamicin resistance by uptake impairment in E. faecalis.
PMCID: PMC1635182  PMID: 17065620
2.  Expression of the RND-Type Efflux Pump AdeABC in Acinetobacter baumannii Is Regulated by the AdeRS Two-Component System 
The AdeABC pump of Acinetobacter baumannii BM4454, which confers resistance to various antibiotic classes including aminoglycosides, is composed of the AdeA, AdeB, and AdeC proteins; AdeB is a member of the RND superfamily. The adeA, adeB, and adeC genes are contiguous and adjacent to adeS and adeR, which are transcribed in the opposite direction and which specify proteins homologous to sensors and regulators of two-component systems, respectively (S. Magnet, P. Courvalin, and T. Lambert, Antimicrob. Agents Chemother. 45:3375-3380, 2001). Analysis by Northern hybridization indicated that the three genes were cotranscribed, although mRNAs corresponding to adeAB and adeC were also present. Cotranscription of the two regulatory genes was demonstrated by reverse transcription-PCR. Inactivation of adeS led to aminoglycoside susceptibility. Transcripts corresponding to adeAB were not detected in susceptible A. baumannii CIP 70-10 but were present in spontaneous gentamicin-resistant mutants obtained in vitro. Analysis of these mutants revealed the substitutions Thr153→Met in AdeS downstream from the putative His-149 site of autophosphorylation, which is presumably responsible for the loss of phosphorylase activity by the sensor, and Pro116→Leu in AdeR at the first residue of the α5 helix of the receiver domain, which is involved in interactions that control the output domain of response regulators. These mutations led to constitutive expression of the pump and, thus, to antibiotic resistance. These data indicate that the AdeABC pump is cryptic in wild A. baumannii due to stringent control by the AdeRS two-component system.
PMCID: PMC514774  PMID: 15328088
3.  VanD-Type Vancomycin-Resistant Enterococcus faecium 10/96A 
VanD type Enterococcus faecium 10/96A is constitutively resistant to vancomycin and to low levels of teicoplanin by nearly exclusive synthesis of peptidoglycan precursors terminating in d-alanyl-d-lactate (L. M. Dalla Costa, P. E. Reynolds, H. A. Souza, D. C. Souza, M. F. Palepou, and N. Woodford, Antimicrob. Agents Chemother. 44:3444-3446, 2000). A G184S mutation adjacent to the serine involved in the binding of d-Ala1 in the d-alanine:d-alanine ligase (Ddl) led to production of an impaired Ddl and accounts for the lack of d-alanyl-d-alanine-containing peptidoglycan precursors. The sequence of the vanD gene cluster revealed eight open reading frames. The organization of this operon, assigned to a chromosomal location, was similar to those in other VanD type strains. The distal part encoded the VanHD dehydrogenase, the VanD ligase, and the VanXD dipeptidase, which were homologous to the corresponding proteins in VanD-type strains. Upstream from the structural genes for these proteins was the vanYD gene; a frameshift mutation in this gene resulted in premature termination of the encoded protein and accounted for the lack of penicillin-susceptible d,d-carboxypeptidase activity. Analysis of the translated sequence downstream from the stop codon, but in a different reading frame because of the frameshift mutation, indicated homology with penicillin binding proteins (PBPs) with a high degree of identity with VanYD from VanD-type strains. The 5′ end of the gene cluster contained the vanRD-vanSD genes for a putative two-component regulatory system. Insertion of ISEfa4 in the vanSD gene led to constitutive expression of vancomycin resistance. This new insertion belonged to the IS605 family and was composed of two open reading frames encoding putative transposases of two unrelated insertion sequence elements, IS200 and IS1341.
PMCID: PMC149003  PMID: 12499162
6.  rpoB Mutation Conferring Rifampin Resistance in Streptococcus pyogenes 
Streptococcus pyogenes BM4478 and Staphylococcus aureus BM4479 were isolated from a patient undergoing rifampin therapy. High-level resistance to rifampin was due to the following mutations in the rpoB gene: Ser522Leu in strain BM4478 and His526Asn and Ser574Leu in strain BM4479.
PMCID: PMC127170  PMID: 11959602
7.  Mutation in 23S rRNA Responsible for Resistance to 16-Membered Macrolides and Streptogramins in Streptococcus pneumoniae 
Streptococcus pneumoniae clinical isolate BM4455 was resistant to 16-membered macrolides and to streptogramins. This unusual resistance phenotype was due to an A2062C (Escherichia coli numbering) mutation in domain V of the four copies of 23S rRNA.
PMCID: PMC90283  PMID: 11120988
8.  Potential for Reduction of Streptogramin A Resistance Revealed by Structural Analysis of Acetyltransferase VatA 
Antimicrobial Agents and Chemotherapy  2014;58(12):7083-7092.
Combinations of group A and B streptogramins (i.e., dalfopristin and quinupristin) are “last-resort” antibiotics for the treatment of infections caused by Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Resistance to streptogramins has arisen via multiple mechanisms, including the deactivation of the group A component by the large family of virginiamycin O-acetyltransferase (Vat) enzymes. Despite the structural elucidation performed for the VatD acetyltransferase, which provided a general molecular framework for activity, a detailed characterization of the essential catalytic and antibiotic substrate-binding determinants in Vat enzymes is still lacking. We have determined the crystal structure of S. aureus VatA in apo, virginiamycin M1- and acetyl-coenzyme A (CoA)-bound forms and provide an extensive mutagenesis and functional analysis of the structural determinants required for catalysis and streptogramin A recognition. Based on an updated genomic survey across the Vat enzyme family, we identified key conserved residues critical for VatA activity that are not part of the O-acetylation catalytic apparatus. Exploiting such constraints of the Vat active site may lead to the development of streptogramin A compounds that evade inactivation by Vat enzymes while retaining binding to their ribosomal target.
PMCID: PMC4249515  PMID: 25223995
9.  Validation of Antibiotic Susceptibility Testing Guidelines in a Routine Clinical Microbiology Laboratory Exemplifies General Key Challenges in Setting Clinical Breakpoints 
This study critically evaluated the new European Committee for Antimicrobial Susceptibility Testing (EUCAST) antibiotic susceptibility testing guidelines on the basis of a large set of disk diffusion diameters determined for clinical isolates. We report several paradigmatic problems that illustrate key issues in the selection of clinical susceptibility breakpoints, which are of general importance not only for EUCAST but for all guidelines systems, i.e., (i) the need for species-specific determinations of clinical breakpoints/epidemiological cutoffs (ECOFFs), (ii) problems arising from pooling data from various sources, and (iii) the importance of the antibiotic disk content for separating non-wild-type and wild-type populations.
PMCID: PMC4068562  PMID: 24777093
10.  Identification of 50 Class D β-Lactamases and 65 Acinetobacter-Derived Cephalosporinases in Acinetobacter spp. 
Whole-genome sequencing of a collection of 103 Acinetobacter strains belonging to 22 validly named species and another 16 putative species allowed detection of genes for 50 new class D β-lactamases and 65 new Acinetobacter-derived cephalosporinases (ADC). All oxacillinases (OXA) contained the three typical motifs of class D β-lactamases, STFK, (F/Y)GN, and K(S/T)G. The phylogenetic tree drawn from the OXA sequences led to an increase in the number of OXA groups from 7 to 18. The topologies of the OXA and RpoB phylogenetic trees were similar, supporting the ancient acquisition of blaOXA genes by Acinetobacter species. The class D β-lactamase genes appeared to be intrinsic to several species, such as Acinetobacter baumannii, Acinetobacter pittii, Acinetobacter calcoaceticus, and Acinetobacter lwoffii. Neither blaOXA-40/143- nor blaOXA-58-like genes were detected, and their origin remains therefore unknown. The phylogenetic tree analysis based on the alignment of the sequences deduced from blaADC revealed five main clusters, one containing ADC belonging to species closely related to A. baumannii and the others composed of cephalosporinases from the remaining species. No indication of blaOXA or blaADC transfer was observed between distantly related species, except for blaOXA-279, possibly transferred from Acinetobacter genomic species 6 to Acinetobacter parvus. Analysis of β-lactam susceptibility of seven strains harboring new oxacillinases and cloning of the corresponding genes in Escherichia coli and in a susceptible A. baumannii strain indicated very weak hydrolysis of carbapenems. Overall, this study reveals a large pool of β-lactamases in different Acinetobacter spp., potentially transferable to pathogenic strains of the genus.
PMCID: PMC3910822  PMID: 24277043
11.  RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations 
Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system.
PMCID: PMC3697384  PMID: 23587960
12.  Staphylococcus aureus VRSA-11B Is a Constitutive Vancomycin-Resistant Mutant of Vancomycin-Dependent VRSA-11A 
Vancomycin-resistant Staphylococcus aureus VRSA-10 was isolated in 2009, whereas VRSA-11A and VRSA-11B were isolated from the same patient in 2010. Growth curves and determination of the nature of the peptidoglycan precursors and of the VanX d,d-dipeptidase activity in the absence and in the presence of vancomycin indicated that vancomycin resistance was inducible in VRSA-10, that VRSA-11A was partially dependent on glycopeptide for growth, and that VRSA-11B was constitutively resistant. Both VRSA-11A and -11B harbored an insertion sequence, ISEf1, at the same locus in the vanX-vanY intergenic region of Tn1546 and an S183A mutation in the chromosomal d-alanyl:d-alanine ligase (Ddl). This substitution has been shown to be responsible for a drastic diminution of the affinity of the enzyme for d-Ala at subsite 1 in Escherichia coli DdlB. VRSA-11B exhibited an additional mutation, P216T, in the transcriptional regulator VanR, most probably associated with constitutive expression of vancomycin resistance. It is thus likely that VRSA-11B is a constitutive derivative of VRSA-11A selected during prolonged vancomycin therapy. Synthesis of peptidoglycan precursors ending in d-Ala-d-lactate was responsible for oxacillin susceptibility of VRSA-11A and VRSA-11B despite the presence of a wild-type mecA gene in both strains.
PMCID: PMC3421854  PMID: 22710116
13.  RmtF, a New Member of the Aminoglycoside Resistance 16S rRNA N7 G1405 Methyltransferase Family 
Multidrug-resistant clinical isolate Klebsiella pneumoniae BM4686 was highly resistant to 4,6-disubstituted 2-deoxystreptamines and to fortimicin. Resistance was due to the presence, on the 40-kb non-self-transferable plasmid pIP849, of the rmtF gene which was cotranscribed with the upstream aac(6′)-Ib gene. The deduced RmtF protein had 25 to 46% identity with members of the N7 G1405 family of aminoglycoside resistance 16S rRNA methyltransferases.
PMCID: PMC3393463  PMID: 22547620
14.  Expression of the Resistance-Nodulation-Cell Division Pump AdeIJK in Acinetobacter baumannii Is Regulated by AdeN, a TetR-Type Regulator 
Resistance-nodulation-division efflux system AdeIJK contributes to intrinsic resistance to various drug classes in Acinetobacter baumannii. By whole-genome sequencing, we have identified in clinical isolate BM4587 the adeN gene, located 813 kbp upstream from adeIJK, which encodes a TetR transcriptional regulator. In one-step mutant BM4666 overexpressing adeIJK, the deletion of cytosine 582 (C582) in the 3′ portion of this gene was responsible for a frameshift mutation resulting in the deletion of the seven C-terminal residues. trans-Complementation of this BM4587 derivative with a plasmid expressing adeN restored antibiotic susceptibility to the host associated with the loss of adeJ overexpression. The inactivation of adeN in BM4587 led to a diminished susceptibility to antibiotics that are substrates for AdeIJK and to a 5-fold increase in adeJ expression. Taken together, these results indicate that AdeN represses AdeIJK expression. Quantitative reverse transcription-PCR (qRT-PCR) demonstrated that AdeN is constitutively expressed in BM4587 and does not regulate its own expression. Deletion of cytosine 582 and a 394-bp deletion of the 3′ part of adeN were found in independent one-step adeIJK-overexpressing mutants selected from clinical isolates BM4667 and BM4651, respectively. The corresponding alterations were located in the α9 helix, which is known to be involved in dimerization, a process essential for the activity of TetR regulators. The adeN gene was detected in all of the 30 A. baumannii strains tested and in Acinetobacter calcoaceticus, Acinetobacter nosocomialis, and Acinetobacter pittii.
PMCID: PMC3346617  PMID: 22371895
15.  AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii▿  
We have identified a second resistance-nodulation-cell division (RND)-type efflux pump, AdeIJK, in clinical isolate Acinetobacter baumannii BM4454. The adeI, adeJ, and adeK genes encode, respectively, the membrane fusion, RND, and outer membrane components of the pump. AdeJ belongs to the AcrB protein family (57% identity with AcrB from Escherichia coli). mRNA analysis by Northern blotting and reverse transcription-PCR indicated that the genes were cotranscribed. Overexpression of the cloned adeIJK operon was toxic in both E. coli and Acinetobacter. The adeIJK genes were detected in all of the 60 strains of A. baumannii tested. The two latter observations suggest that the AdeIJK complex might contribute to intrinsic but not to acquired antibiotic resistance in Acinetobacter. To characterize the substrate specificity of the pump, we have constructed derivatives of BM4454 in which adeIJK (strain BM4579), adeABC (strain BM4561), or both groups of genes (strain BM4652) were inactivated by deletion-insertion. Determination of the antibiotic susceptibility of these strains and of BM4652 and BM4579, in which the adeIJK operon was provided in trans, indicated that the AdeIJK pump contributes to resistance to β-lactams, chloramphenicol, tetracycline, erythromycin, lincosamides, fluoroquinolones, fusidic acid, novobiocin, rifampin, trimethoprim, acridine, safranin, pyronine, and sodium dodecyl sulfate. The chemical structure of these molecules suggests that amphiphilic compounds are the preferred substrates. The AdeABC and AdeIJK efflux systems contributed in a more than additive fashion to tigecycline resistance.
PMCID: PMC2224764  PMID: 18086852
16.  VanE-Type Vancomycin-Resistant Enterococcus faecalis Clinical Isolates from Australia 
Antimicrobial Agents and Chemotherapy  2004;48(12):4882-4885.
Three distinct Enterococcus faecalis VanE-type isolates—BM4574, BM4575, and BM4576-obtained in Australia were studied. Expression of the resistance genes was constitutive in BM4575, probably due to a 2-bp deletion into the vanSE gene, and inducible in BM4574 and BM4576. Transcription analysis of the vanE operons suggested that the five genes were cotranscribed from an initiation site located 25 bp upstream from the ATG start codon of vanE.
PMCID: PMC529234  PMID: 15561872
17.  Aminoglycoside Resistance Gene ant(4′)-IIb of Pseudomonas aeruginosa BM4492, a Clinical Isolate from Bulgaria 
The ant(4′)-IIb gene of Pseudomonas aeruginosa BM4492, which encodes an aminoglycoside 4′-O-adenylyltransferase, was identified as a coding sequence of 756 bp corresponding to a protein with a calculated mass of 27,219 Da. Analysis of the deduced sequence indicated that the protein was related to aminoglycoside 4′-O-adenylyltransferases IIa and Ia found in P. aeruginosa and gram-positive bacteria, respectively. The enzyme conferred resistance to amikacin and tobramycin but not to dibekacin, gentamicin, or netilmicin. The ant(4′)-IIb gene had a chromosomal location in five of six clinical isolates of P. aeruginosa tested and was plasmid borne in the remaining strain. The ant(4′)-IIb gene was detected by PCR in some clinical strains of P. aeruginosa from the same hospital but not in members of other bacterial genera.
PMCID: PMC153341  PMID: 12709326
18.  Efflux Pump Lde Is Associated with Fluoroquinolone Resistance in Listeria monocytogenes 
Five Listeria monocytogenes isolates (CLIP 21369, CLIP 73298, CLIP 74811, CLIP 75679, and CLIP 79372) were found to be resistant to fluoroquinolones during the screening for antibiotic resistance of 488 L. monocytogenes isolates from human cases of listeriosis in France. On the basis of a fourfold or greater decrease in the ciprofloxacin MIC in the presence of reserpine, fluoroquinolone resistance was attributed to active efflux of the drugs. The lde gene (Listeria drug efflux; formerly lmo2741) encodes a 12-transmembrane-segment putative efflux pump belonging to the major facilitator superfamily of secondary transporters that displayed 44% identity with PmrA from Streptococcus pneumoniae. Insertional inactivation of the lde gene in CLIP 21369 indicated that the corresponding protein was responsible for fluoroquinolone resistance and was involved in the level of susceptibility to dyes such as ethidium bromide and acridine orange.
PMCID: PMC151722  PMID: 12543681
19.  ColE1-Like Plasmid pIP843 of Klebsiella pneumoniae Encoding Extended-Spectrum β-Lactamase CTX-M-17 
The resistance of Klebsiella pneumoniae BM4493, isolated in Ho Chi Minh City, Vietnam, to cefotaxime and aztreonam was due to production of a novel β-lactamase, CTX-M-17. The blaCTX-M-17 gene was borne by 7,086-bp plasmid pIP843, which was entirely sequenced and which was found to belong to the ColE1 family. The 876-bp blaCTX-M-17 gene differed from blaCTX-M-14 by 2 nucleotides, which led to the single amino acid substitution Glu289→Lys. blaCTX-M-17 was flanked upstream by an ISEcp1-like element and downstream by an insertion sequence (IS) IS903 variant designated IS903-C. The transcriptional start site of blaCTX-M-17 was located 109 nucleotides upstream from the initiation codon in the ISEcp1-like element, which also provided the promoter sequences. Plasmid pIP843, which was non-self-transferable and nonmobilizable, contained five open reading frames transcribed in the same orientation. Regions homologous to sequences coding for putative RNA II and RNA I transcripts, a rom gene, which is involved in initiation of replication, and a cer-like gene, which is responsible for the stability of ColE1-like plasmids, were identified. Consensus sequences for putative replication (oriV) and transfer (oriT) origins were present. Results of primer extension experiments indicated that ISEcp1 provides the promoter for expression of blaCTX-M-17 and may contribute to dissemination of this gene.
PMCID: PMC127148  PMID: 11959547
20.  Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in Acinetobacter baumannii Strain BM4454 
Antimicrobial Agents and Chemotherapy  2001;45(12):3375-3380.
Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster.
PMCID: PMC90840  PMID: 11709311
21.  Consequences of VanE-Type Resistance on Efficacy of Glycopeptides In Vitro and in Experimental Endocarditis Due to Enterococcus faecalis 
Antimicrobial Agents and Chemotherapy  2001;45(10):2826-2830.
The consequences on glycopeptide activity of low-level resistance to vancomycin due to VanE-type resistance were evaluated in vitro and in experimental endocarditis caused by Enterococcus faecalis BM4405 (MICs of vancomycin and teicoplanin: 16 and 0.5 μg/ml, respectively), its susceptible derivative BM4405-1, and susceptible E. faecalis JH2-2. After 24 h of incubation, vancomycin at 8 μg/ml was not active against E. faecalis BM4405 whereas it was bacteriostatic against strains BM4405-1 and JH2-2. Against all three strains, vancomycin at 30 μg/ml and teicoplanin at 8 or 30 μg/ml were bacteriostatic but bactericidal when combined with gentamicin. In rabbits with aortic endocarditis due to VanE-type resistant strain BM4405, treatment with a standard dose of vancomycin generated subinhibitory plasma concentrations (i.e., peak of 36.3 ± 2.1 μg/ml and trough of 6.0 ± 2.2 μg/ml) and led to no significant reduction in mean aortic valve vegetation counts compared to no treatment of control animals. In contrast, a higher dosing regimen of vancomycin (i.e., resulting in a peak of 38.3 ± 5.2 μg/ml and a trough of 15.0 ± 8.3 μg/ml), providing plasma concentrations above the MIC for the entire dosing interval, led to significant and similar activities against all three strains, which were enhanced by combination with gentamicin. Treatment with teicoplanin led to results similar to those obtained with vancomycin at a high dose. No subpopulations with increased resistance to glycopeptides were selected in vitro or in vivo. In conclusion, the use of a high dose of vancomycin was necessary for the treatment of experimental enterococcal endocarditis due to VanE-type strains.
PMCID: PMC90738  PMID: 11557476
22.  Molecular Characterization of Integrons in Acinetobacter baumannii: Description of a Hybrid Class 2 Integron 
Antimicrobial Agents and Chemotherapy  2000;44(10):2684-2688.
Twenty Acinetobacter baumannii strains resistant to various antibiotics were analyzed for integron content and sequences of the amplification products. Sixteen clinical isolates had a class 1 integron, 2 contained an additional class 1 or class 2 integron, but no class 3 integron was detected. Thirteen strains had integrons with a single cassette: aac(3)-Ia (9 strains), ant(2")-Ia (2 strains), or aac(6′)-Ib (2 strains); 1 had aac(6′)-Ib and oxa20 cassettes and an unknown gene; and 1 had an integron containing ant(2")-Ia and an oxa3 cassette truncated by IS6100. The remaining strains harbored class 1 integrons with gene cassettes previously found in Enterobacteriaceae. One integron had a hybrid structure composed of intI2 and the 3′ conserved segment of class 1 integrons. These data indicate that integrons play a major role in multidrug resistance in Acinetobacter.
PMCID: PMC90135  PMID: 10991844
23.  Bactericidal Activity of Gentamicin against Enterococcus faecalis In Vitro and In Vivo 
The activity of gentamicin at various concentrations against two strains of Enterococcus faecalis was investigated in vitro and in a rabbit model of aortic endocarditis. In vitro, gentamicin at 0.5 to 4 times the MIC failed to reduce the number of bacteria at 24 h. Rabbit or human serum dramatically increased gentamicin activity, leading to a ≥3-log10 CFU/ml decrease in bacterial counts when the drug concentration exceeded the MIC. Susceptibility testing in the presence of serum was predictive of in vivo activity, since gentamicin alone significantly reduced the number of surviving bacteria in the vegetations if the peak-to-MIC ratio was greater than 1. However, gentamicin selected resistant mutants in rabbits. The intrinsic activity of gentamicin should be taken into account in evaluation of combinations of gentamicin and cell wall-active agents against enterococci.
PMCID: PMC90016  PMID: 10898678
24.  vanC Cluster of Vancomycin-Resistant Enterococcus gallinarum BM4174 
Glycopeptide-resistant enterococci of the VanC type synthesize UDP-muramyl-pentapeptide[d-Ser] for cell wall assembly and prevent synthesis of peptidoglycan precursors ending in d-Ala. The vanC cluster of Enterococcus gallinarum BM4174 consists of five genes: vanC-1, vanXYC, vanT, vanRC, and vanSC. Three genes are sufficient for resistance: vanC-1 encodes a ligase that synthesizes the dipeptide d-Ala-d-Ser for addition to UDP-MurNAc-tripeptide, vanXYC encodes a d,d-dipeptidase–carboxypeptidase that hydrolyzes d-Ala-d-Ala and removes d-Ala from UDP-MurNAc-pentapeptide[d-Ala], and vanT encodes a membrane-bound serine racemase that provides d-Ser for the synthetic pathway. The three genes are clustered: the start codons of vanXYC and vanT overlap the termination codons of vanC-1 and vanXYC, respectively. Two genes which encode proteins with homology to the VanS-VanR two-component regulatory system were present downstream from the resistance genes. The predicted amino acid sequence of VanRC exhibited 50% identity to VanR and 33% identity to VanRB. VanSC had 40% identity to VanS over a region of 308 amino acids and 24% identity to VanSB over a region of 285 amino acids. All residues with important functions in response regulators and histidine kinases were conserved in VanRC and VanSC, respectively. Induction experiments based on the determination of d,d-carboxypeptidase activity in cytoplasmic extracts confirmed that the genes were expressed constitutively. Using a promoter-probing vector, regions upstream from the resistance and regulatory genes were identified that have promoter activity.
PMCID: PMC89929  PMID: 10817725
25.  Spectinomycin Resistance in Neisseria spp. Due to Mutations in 16S rRNA 
Spectinomycin resistance in clinical isolates of Neisseria meningitidis and Neisseria gonorrhoeae was found to be due to mutations G1064C and C1192U (Escherichia coli numbering) in 16S rRNA genes, respectively.
PMCID: PMC89873  PMID: 10770780

Results 1-25 (72)