PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Quantitative Plasma Biomarker Analysis in HDI Exposure Assessment 
Annals of Occupational Hygiene  2009;54(1):41-54.
Quantification of amines in biological samples is important for evaluating occupational exposure to diisocyanates. In this study, we describe the quantification of 1,6-hexamethylene diamine (HDA) levels in hydrolyzed plasma of 46 spray painters applying 1,6-hexamethylene diisocyanate (HDI)-containing paint in vehicle repair shops collected during repeated visits to their workplace and their relationship with dermal and inhalation exposure to HDI monomer. HDA was detected in 76% of plasma samples, as heptafluorobutyryl derivatives, and the range of HDA concentrations was ≤0.02–0.92 μg l−1. After log-transformation of the data, the correlation between plasma HDA levels and HDI inhalation exposure measured on the same workday was low (N = 108, r = 0.22, P = 0.026) compared with the correlation between plasma HDA levels and inhalation exposure occurring ∼20 to 60 days before blood collection (N = 29, r = 0.57, P = 0.0014). The correlation between plasma HDA levels and HDI dermal exposure measured on the same workday, although statistically significant, was low (N = 108, r = 0.22, P = 0.040) while the correlation between HDA and dermal exposure occurring ∼20 to 60 days before blood collection was slightly improved (N = 29, r = 0.36, P = 0.053). We evaluated various workplace factors and controls (i.e. location, personal protective equipment use and paint booth type) as modifiers of plasma HDA levels. Workers using a downdraft-ventilated booth had significantly lower plasma HDA levels relative to semi-downdraft and crossdraft booth types (P = 0.0108); this trend was comparable to HDI inhalation and dermal exposure levels stratified by booth type. These findings indicate that HDA concentration in hydrolyzed plasma may be used as a biomarker of cumulative inhalation and dermal exposure to HDI and for investigating the effectiveness of exposure controls in the workplace.
doi:10.1093/annhyg/mep069
PMCID: PMC2802519  PMID: 19805392
biomarker; dermal exposure; 1,6-hexamethylene diamine (HDA); 1,6-hexamethylene diisocyanate (HDI); inhalation exposure; plasma
2.  Quantification and Statistical Modeling—Part I: Breathing-Zone Concentrations of Monomeric and Polymeric 1,6-Hexamethylene Diisocyanate 
Annals of Occupational Hygiene  2009;53(7):677-689.
We conducted a repeated exposure-assessment survey for task-based breathing-zone concentrations (BZCs) of monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI) during spray painting on 47 automotive spray painters from North Carolina and Washington State. We report here the use of linear mixed modeling to identify the primary determinants of the measured BZCs. Both one-stage (N = 98 paint tasks) and two-stage (N = 198 paint tasks) filter sampling was used to measure concentrations of HDI, uretidone, biuret, and isocyanurate. The geometric mean (GM) level of isocyanurate (1410 μg m−3) was higher than all other analytes (i.e. GM < 7.85 μg m−3). The mixed models were unique to each analyte and included factors such as analyte-specific paint concentration, airflow in the paint booth, and sampler type. The effect of sampler type was corroborated by side-by-side one- and two-stage personal air sampling (N = 16 paint tasks). According to paired t-tests, significantly higher concentrations of HDI (P = 0.0363) and isocyanurate (P = 0.0035) were measured using one-stage samplers. Marginal R2 statistics were calculated for each model; significant fixed effects were able to describe 25, 52, 54, and 20% of the variability in BZCs of HDI, uretidone, biuret, and isocyanurate, respectively. Mixed models developed in this study characterize the processes governing individual polyisocyanate BZCs. In addition, the mixed models identify ways to reduce polyisocyanate BZCs and, hence, protect painters from potential adverse health effects.
doi:10.1093/annhyg/mep046
PMCID: PMC2758668  PMID: 19622637
air sampling; exposure determinants; hexamethylene diisocyanate; isocyanate; statistical modeling
3.  Quantification and Statistical Modeling—Part II: Dermal Concentrations of Monomeric and Polymeric 1,6-Hexamethylene Diisocyanate 
Annals of Occupational Hygiene  2009;53(7):691-702.
We conducted a quantitative dermal and inhalation exposure assessment of monomeric and polymeric 1,6-hexamethylene diisocyanates (HDI) in 47 automotive spray painters from North Carolina and Washington State. We report here the use of linear mixed modeling (LMM) to identify the primary determinants of dermal exposure. Dermal concentrations of HDI, uretidone, biuret, and isocyanurate were significantly higher in 15 painters who did not wear coveralls or gloves (N = 51 paint tasks) than in 32 painters who did wear coveralls and gloves (N = 192 paint tasks) during spray painting. Regardless of whether protective clothing was worn, isocyanurate was the predominant species measured in the skin [geometric mean (GM) = 33.8 ng mm−3], with a 95% detection rate. Other polyisocyanates (GM ≤ 0.17 ng mm−3) were detected in skin during <23% of the paint tasks. According to marginal R2 statistics, mixed models generated in this study described no <36% of the variability in dermal concentrations of the different polyisocyanates measured in painters who did not wear protective clothing. These models also described 55% of the variability in dermal concentrations of isocyanurate measured in all painters (N = 288 paint tasks). The product of analyte-specific breathing-zone concentration (BZC) and paint time was the most significant variable in all the models. Through LMM, a better understanding of the exposure pathways governing individual polyisocyanate exposures may be achieved. In particular, we were able to establish a link between BZC and dermal concentration, which may be useful for exposure reconstruction and quantitatively characterizing the protective effect of coveralls and gloves. This information can be used to reduce dermal exposures and better protect automotive spray painters from potential adverse health effects.
doi:10.1093/annhyg/mep048
PMCID: PMC2758669  PMID: 19635734
dermal exposure; exposure determinants; hexamethylene diisocyanate; isocyanate; statistical modeling
4.  Comparing Urinary Biomarkers of Airborne and Dermal Exposure to Polycyclic Aromatic Compounds in Asphalt-Exposed Workers 
Annals of Occupational Hygiene  2009;53(6):561-571.
When working with hot mix asphalt, road pavers are exposed to polycyclic aromatic hydrocarbons (PAHs) through the inhalation of vapors and particulate matter (PM) and through dermal contact with PM and contaminated surfaces. Several PAHs with four to six rings are potent carcinogens which reside in these particulate emissions. Since urinary biomarkers of large PAHs are rarely detectable in asphalt workers, attention has focused upon urinary levels of the more volatile and abundant two-ring and three-ring PAHs as potential biomarkers of PAH exposure. Here, we compare levels of particulate polycyclic aromatic compounds (P-PACs, a group of aromatic hydrocarbons containing PAHs and heterocyclic compounds with four or more rings) in air and dermal patch samples from 20 road pavers to the corresponding urinary levels of naphthalene (U-Nap) (two rings), phenanthrene (U-Phe) (three rings), monohydroxylated metabolites of naphthalene (OH-Nap) and phenanthrene (OH-Phe), and 1-hydroxypyrene (OH-Pyr) (four rings), the most widely used biomarker of PAH exposure. For each worker, daily breathing-zone air (n = 55) and dermal patch samples (n = 56) were collected on three consecutive workdays along with postshift, bedtime, and morning urine samples (n = 149). Measured levels of P-PACs and the urinary analytes were used to statistically model exposure–biomarker relationships while controlling for urinary creatinine, smoking status, age, body mass index, and the timing of urine sampling. Levels of OH-Phe in urine collected postshift, at bedtime, and the following morning were all significantly associated with levels of P-PACs in air and dermal patch samples. For U-Nap, U-Phe, and OH-Pyr, both air and dermal patch measurements of P-PACs were significant predictors of postshift urine levels, and dermal patch measurements were significant predictors of bedtime urine levels (all three analytes) and morning urine levels (U-Nap and OH-Pyr only). Significant effects of creatinine concentration were observed for all analytes, and modest effects of smoking status and body mass index were observed for U-Phe and OH-Pyr, respectively. Levels of OH-Nap were not associated with P-PAC measurements in air or dermal patch samples but were significantly affected by smoking status, age, day of sample collection, and urinary creatinine. We conclude that U-Nap, U-Phe, OH-Phe, and OH-Pyr can be used as biomarkers of exposure to particulate asphalt emissions, with OH-Phe being the most promising candidate. Indications that levels of U-Nap, U-Phe, and OH-Pyr were significantly associated with dermal patch measurements well into the evening after a given work shift, combined with the small ratios of within-person variance components to between-person variance components at bedtime, suggest that bedtime measurements may be useful for investigating dermal PAH exposures.
doi:10.1093/annhyg/mep042
PMCID: PMC2723216  PMID: 19602502
asphalt; biomarker; PAH; PAC; urine

Results 1-4 (4)