PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
1.  Exercise training with weight loss and either a high or low glycemic diet reduces metabolic syndrome severity in older adults 
Annals of nutrition & metabolism  2012;61(2):135-141.
Background
The efficacy of combining carbohydrate quality with exercise on metabolic syndrome risk is unclear. Thus, we determined the effects of exercise training with a low or high glycemic diet on metabolic syndrome severity (Z-score).
Methods
Twenty-one adults (66.2 ± 1.1 yr; BMI = 35.3 ± 0.9 kg/m2) with metabolic syndrome were randomized to 12 weeks of exercise (60 minutes/d for 5 d/week at ~85% HRmax) and provided a low-glycemic (n=11; LoGIx) or high glycemic (n=10; HiGIx) diet. Z-scores were determined from: blood pressure, triglycerides (TG), high-density lipoproteins (HDL), fasting plasma glucose (FPG), and waist circumference (WC) before and after the intervention. Body composition, aerobic fitness, insulin resistance, and non-esterfied fatty acid (NEFA) suppression were also assessed.
Results
LoGIx and HiGIx decreased body mass and insulin resistance and increased aerobic fitness comparably (p < 0.05). LoGIx and HiGIx decreased the Z-score similarly, as each intervention decreased blood pressure, TG, FPG, and WC (p < 0.05). HiGIx tended to suppress NEFA during insulin stimulation compared to LoGIx (p = 0.06).
Conclusions
Our findings highlight that exercise with weight loss reduces metabolic syndrome severity whether individuals were randomized to a high or low glycemic index diet.
doi:10.1159/000342084
PMCID: PMC3586384  PMID: 23036993
aging; obesity; lifestyle modification; diabetes; impaired glucose tolerance
2.  Exercise Training and Dietary Glycemic Load May Have Synergistic Effects on Insulin Resistance in Older Obese Adults 
Annals of Nutrition & Metabolism  2009;55(4):326-333.
Background/Aims
The aim of this study was to assess the combined effects of exercise and dietary glycemic load on insulin resistance in older obese adults.
Methods
Eleven men and women (62 ± 2 years; 97.6 ± 4.8 kg; body mass index 33.2 ± 2.0) participated in a 12-week supervised exercise program, 5 days/week, for about 1 h/day, at 80–85% of maximum heart rate. Dietary glycemic load was calculated from dietary intake records. Insulin resistance was determined using the euglycemic (5.0 mM) hyperinsulinemic (40 mU/m2/min) clamp.
Results
The intervention improved insulin sensitivity (2.37 ± 0.37 to 3.28 ± 0.52 mg/kg/min, p < 0.004), increased VO2max (p < 0.009), and decreased body weight (p < 0.009). Despite similar caloric intakes (1,816 ± 128 vs. 1,610 ± 100 kcal/day), dietary glycemic load trended towards a decrease during the study (140 ± 10 g before, vs. 115 ± 8 g during, p < 0.04). The change in insulin sensitivity correlated with the change in glycemic load (r = 0.84, p < 0.009). Four subjects reduced their glycemic load by 61 ± 8%, and had significantly greater increases in insulin sensitivity (78 ± 11 vs. 23 ± 8%, p < 0.003), and decreases in body weight (p < 0.004) and plasma triglycerides (p < 0.04) compared to the rest of the group.
Conclusion
The data suggest that combining a low-glycemic diet with exercise may provide an alternative and more effective treatment for insulin resistance in older obese adults.
doi:10.1159/000248991
PMCID: PMC2853590  PMID: 19844089
Diabetes; Obesity; Aging; Insulin sensitivity; Physical activity; Glycemic index

Results 1-2 (2)