Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Near-infrared spectroscopy StO2 monitoring to assess the therapeutic effect of drotrecogin alfa (activated) on microcirculation in patients with severe sepsis or septic shock 
Sepsis is a leading cause of death despite appropriate management. There is increasing evidence that microcirculatory alterations might persist independently from macrohemodynamic improvement and are related to clinical evolution. Future efforts need to be directed towards microperfusion monitoring and treatment. This study explored the utility of thenar muscle oxygen saturation (StO2) and its changes during a transient vascular occlusion test (VOT) to measure the microcirculatory response to drotrecogin alfa (activated) (DrotAA) in septic patients.
A prospective, observational study was performed in three general intensive care units at three university hospitals. We studied 58 patients with recent onset of severe sepsis or septic shock and at least two organ dysfunctions. Thirty-two patients were treated with DrotAA and 26 were not treated because of formal contraindication. StO2 was monitored using near-infrared spectroscopy (NIRS), and VOT was performed to obtain deoxygenation (DeOx) and reoxygenation (ReOx) slopes. Measurements were obtained before DrotAA was started and were repeated daily for a 96-hour period.
Patients’ characteristics, outcome, severity, and baseline values of StO2, DeOx, and ReOx did not differ between groups. Treated patients significantly improved DeOx and ReOx values over time, whereas control patients did not. In treated patients, ReOx improvements were correlated to norepinephrine dose reductions. Early clinical response (SOFA improvement after 48 hours of treatment) was not associated to changes in VOT-derived slopes. In the treated group, the relative improvement of DeOx within 48 hours was able to predict mortality (AUC 0.91, p < 0.01).
In patients with severe sepsis or septic shock, DrotAA infusion was associated with improvement in regional tissue oxygenation. The degree of DeOx amelioration after 2 days in treated patients predicted mortality with high sensitivity and specificity. Thus, StO2 derived variables might be useful to evaluate the microcirculatory response to treatment of septic shock.
PMCID: PMC3847092  PMID: 24007807
Severe sepsis; Septic shock; Tissue oxygen saturation; Near-infrared spectroscopy; Drotrecogin alfa activated; Outcome
2.  Elevated production of radical oxygen species by polymorphonuclear neutrophils in cerebrospinal fluid infection 
Central nervous system infection is a daily concern in neurointensive care; however, diagnosis remains difficult because classical criteria based on cerebrospinal fluid (CSF) analysis are difficult to interpret in post-trauma or neurosurgery patients after recent bleeding. A rapid, specific, sensitive test to diagnose CSF infection would help streamline therapeutic decisions in clinical practice and limit the risk of multiresistant bacteria. We hypothesized that polymorphonuclear neutrophil (PMN) phenotype and radical oxygen species (ROS) production in CSF may be specific to the presence of infection.
This study included 30 patients with suspected CSF infection with ventricular hemorrhage requiring external ventricular drainage, and 13 patients after trauma or surgery. Criteria for evaluating CSF infection included positive culture and > 100 leukocytes/mm3. Analysis of PMN phenotype was performed using flow cytometry (CD16, CD11b, and CD62L). ROS production was analyzed through luminometry (luminol).
Infected CSF exhibited higher production of ROS compared with noninfected CSF. PMNs in CSF exhibited low CD16 and high annexin V expression, suggesting apoptosis.
Measurement of ROS production may discriminate infected from noninfected CSF. This simple test would be easy to employ in clinical practice to improve CSF infection management.
PMCID: PMC3359206  PMID: 22490368
Meningitis; Diagnosis; Nosocomial; External ventricular drain; Neurointensive care; Reactive oxygen species
3.  Understanding urine output in critically ill patients 
Urine output often is used as a marker of acute kidney injury but also to guide fluid resuscitation in critically ill patients. Although decrease of urine output may be associated to a decrease of glomerular filtration rate due to decrease of renal blood flow or renal perfusion pressure, neurohormonal factors and functional changes may influence diuresis and natriuresis in critically ill patients. The purpose of this review is to discuss the mechanisms of diuresis regulation, which may help to interpret the urine output in critically ill patients and the appropriate treatment to be initiated in case of changes in urine output.
PMCID: PMC3224471  PMID: 21906341

Results 1-3 (3)