PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (38)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Biofilm formation and adherence characteristics of an Elizabethkingia meningoseptica isolate from Oreochromis mossambicus 
Background
Elizabethkingia spp. are opportunistic pathogens often found associated with intravascular device-related bacteraemias and ventilator-associated pneumonia. Their ability to exist as biofilm structures has been alluded to but not extensively investigated.
Methods
The ability of Elizabethkingia meningoseptica isolate CH2B from freshwater tilapia (Oreochromis mossambicus) and E. meningoseptica strain NCTC 10016T to adhere to abiotic surfaces was investigated using microtiter plate adherence assays following exposure to varying physico-chemical challenges. The role of cell-surface properties was investigated using hydrophobicity (bacterial adherence to hydrocarbons), autoaggregation and coaggregation assays. The role of extracellular components in adherence was determined using reversal or inhibition of coaggregation assays in conjunction with Listeria spp. isolates, while the role of cell-free supernatants, from diverse bacteria, in inducing enhanced adherence was investigated using microtitre plate assays. Biofilm architecture of isolate CH2B alone as well as in co-culture with Listeria monocytogenes was investigated using flow cells and microscopy.
Results
E. meningoseptica isolates CH2B and NCTC 10016T demonstrated stronger biofilm formation in nutrient-rich medium compared to nutrient-poor medium at both 21 and 37°C, respectively. Both isolates displayed a hydrophilic cell surface following the bacterial adherence to xylene assay. Varying autoaggregation and coaggregation indices were observed for the E. meningoseptica isolates. Coaggregation by isolate CH2B appeared to be strongest with foodborne pathogens like Enterococcus, Staphylococcus and Listeria spp. Partial inhibition of coaggregation was observed when isolate CH2B was treated with heat or protease exposure, suggesting the presence of heat-sensitive adhesins, although sugar treatment resulted in increased coaggregation and may be associated with a lactose-associated lectin or capsule-mediated attachment.
Conclusions
E. meningoseptica isolate CH2B and strain NCTC 10016T displayed a strong biofilm-forming phenotype which may play a role in its potential pathogenicity in both clinical and aquaculture environments. The ability of E. meningoseptica isolates to adhere to abiotic surfaces and form biofilm structures may result from the hydrophilic cell surface and multiple adhesins located around the cell.
doi:10.1186/1476-0711-10-16
PMCID: PMC3112384  PMID: 21545730
Elizabethkingia meningoseptica; tilapia; biofilm; adherence; autoaggregation; coaggregation
2.  Comparison of the VersaTREK blood culture system against the Bactec9240 system in patients with suspected bloodstream infections 
Background
To evaluate the VersaTREK (TREK Diagnostic Systems, Cleveland, Ohio) blood culture system against the Bactec9240 (BD Microbiology, Cockeysville, MD), for the recovery of bloodstream pathogens.
Methods
Venous blood from patients with suspected bacterial sepsis was evenly distributed into bottles of each system. Positive signals were recorded and bottles processed onto standard media for organism recovery. False positive signals were regarded if no organisms were seen on Gram stain and no growth was observed.
Results
177 bottles were available for analysis; the Bactec9240 system yielded 43 positive, 134 negative results and no false positive signals. The VersaTREK system had 58 positive signals with 14 being false positives.
Conclusions
In our setting with high background burden of immuno-compromised patients, the VersaTREK system compared favourably with the Bactec9240 in recovering blood stream aerobic and facultative anaerobic pathogens from patients with suspected bacterial sepsis. A concern is the high false positivity rate. Due to its versatility to accommodate small and large workloads as well as using smaller volumes of blood, this system may establish itself as a useful alternative for the recovery of bloodstream pathogens.
doi:10.1186/1476-0711-10-4
PMCID: PMC3042901  PMID: 21294908
3.  Assessment of the requisites of microbiology based infectious disease training under the pressure of consultation needs 
Background
Training of infectious disease (ID) specialists is structured on classical clinical microbiology training in Turkey and ID specialists work as clinical microbiologists at the same time. Hence, this study aimed to determine the clinical skills and knowledge required by clinical microbiologists.
Methods
A cross-sectional study was carried out between June 1, 2010 and September 15, 2010 in 32 ID departments in Turkey. Only patients hospitalized and followed up in the ID departments between January-June 2010 who required consultation with other disciplines were included.
Results
A total of 605 patients undergoing 1343 consultations were included, with pulmonology, neurology, cardiology, gastroenterology, nephrology, dermatology, haematology, and endocrinology being the most frequent consultation specialties. The consultation patterns were quite similar and were not affected by either the nature of infections or the critical clinical status of ID patients.
Conclusions
The results of our study show that certain internal medicine subdisciplines such as pulmonology, neurology and dermatology appear to be the principal clinical requisites in the training of ID specialists, rather than internal medicine as a whole.
doi:10.1186/1476-0711-10-38
PMCID: PMC3260124  PMID: 22177310
Infectious disease; clinical microbiology; training; consultation
4.  Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina 
Background
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity.
Methods
Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts.
Results
These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+.
Conclusion
The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves.
doi:10.1186/1476-0711-10-37
PMCID: PMC3267653  PMID: 22132863
5.  Infection control practice in countries with limited resources 
Nosocomial infections and their control are a world-wide challenge. The prevalence of nosocomial infections is generally higher in developing countries with limited resources than industrialized countries. In this paper we aimed to further explain the differences with regard to infection control challenges between Turkey, a country with "limited" resources, and the Netherlands, a country with "reasonable" resources. Infrastructure of hospitals, low compliance of hand hygiene, understaffing, overcrowding, heavy workload, misuse of personal protective equipments, late establishment of infection control programme are major problems in limited-resources countries. These problems cause high infection rates and spread of multi-drug resistant pathogens. To improve the control and prevention of infections in countries with limited resources, a multi-facet approach is needed.
doi:10.1186/1476-0711-10-36
PMCID: PMC3225304  PMID: 22018286
Infection control; developing country; limited resource; multi-drug resistant pathogen
6.  Cholestatic hepatitis in a patient with typhoid fever - a case report 
Typhoid fever is a very common infectious disease, particularly in developing countries such as Sri Lanka. Although multiple organs are known to be affected by the disease, hepatic involvement could be considered the most important as studies have showed that it is associated with a higher relapse rate. We report a young patient who presented with fever and jaundice and found to have cholestatic hepatitis secondary to typhoid fever.
doi:10.1186/1476-0711-10-35
PMCID: PMC3200156  PMID: 21982051
7.  Decrease in Shiga toxin expression using a minimal inhibitory concentration of rifampicin followed by bactericidal gentamicin treatment enhances survival of Escherichia coli O157:H7-infected BALB/c mice 
Background
Treatment of Escherichia coli O157:H7 infections with antimicrobial agents is controversial due to an association with potentially fatal sequelae. The production of Shiga toxins is believed to be central to the pathogenesis of this organism. Therefore, decreasing the expression of these toxins prior to bacterial eradication may provide a safer course of therapy.
Methods
The utility of decreasing Shiga toxin gene expression in E. coli O157:H7 with rifampicin prior to bacterial eradication with gentamicin was evaluated in vitro using real-time reverse-transcription polymerase chain reaction. Toxin release from treated bacterial cells was assayed for with reverse passive latex agglutination. The effect of this treatment on the survival of E. coli O157:H7-infected BALB/c mice was also monitored.
Results
Transcription of Shiga toxin-encoding genes was considerably decreased as an effect of treating E. coli O157:H7 in vitro with the minimum inhibitory concentration (MIC) of rifampicin followed by the minimum bactericidal concentration (MBC) of gentamicin (> 99% decrease) compared to treatment with gentamicin alone (50-75% decrease). The release of Shiga toxins from E. coli O157:H7 incubated with the MIC of rifampicin followed by addition of the MBC of gentamicin was decreased as well. On the other hand, the highest survival rate in BALB/c mice infected with E. coli O157:H7 was observed in those treated with the in vivo MIC equivalent dose of rifampicin followed by the in vivo MBC equivalent dose of gentamicin compared to mice treated with gentamicin or rifampicin alone.
Conclusions
The use of non-lethal expression-inhibitory doses of antimicrobial agents prior to bactericidal ones in treating E. coli O157:H7 infection is effective and may be potentially useful in human infections with this agent in addition to other Shiga toxin producing E. coli strains.
doi:10.1186/1476-0711-10-34
PMCID: PMC3180354  PMID: 21906403
Escherichia coli O157:H7; rifampicin; gentamicin; Shiga toxins
8.  Rapid PCR detection of group a streptococcus from flocked throat swabs: A retrospective clinical study 
Background
Rapid diagnosis of GAS pharyngitis may improve patient care by ensuring that patients with GAS pharyngitis are treated quickly and also avoiding unnecessary use of antibiotics in those without GAS infection. Very few molecular methods for detection of GAS in clinical throat swab specimens have been described.
Methods
We performed a study of a laboratory-developed internally-controlled rapid Group A streptococcus (GAS) PCR assay using flocked swab throat specimens. We compared the GAS PCR assay to GAS culture results using a collection of archived throat swab samples obtained during a study comparing the performance of conventional and flocked throat swabs.
Results
The sensitivity of the GAS PCR assay as compared to the reference standard was 96.0% (95% CI 90.1% to 98.4%), specificity 98.6% (95% CI 95.8% to 99.5%), positive predictive value (PPV) 96.9% (95% CI 91.4% to 99.0%) and negative predictive value (NPV) of 98.1% (95% CI 95.2% to 99.2%). For conventional swab cultures, sensitivity was 96.0% (95% CI 90.1% to 98.4%), specificity 100% (95% CI 98.2% to 100%), PPV 100%, (95% CI 96.1% to 100%) and NPV 98.1% (95% CI 95.2% to 99.3%)
Conclusions
In this retrospective study, the GAS PCR assay appeared to perform as well as conventional throat swab culture, the current standard of practice. Since the GAS PCR assay, including DNA extraction, can be performed in approximately 1 hour, prospective studies of this assay are warranted to evaluate the clinical impact of the assay on management of patients with pharyngitis.
doi:10.1186/1476-0711-10-33
PMCID: PMC3179694  PMID: 21888649
PCR; rapid; internally-controlled; LCGreen; Group A Streptococcus; pharyngitis; flocked swab
9.  Correlation between antibutyrylcholinesterasic and antioxidant activities of three aqueous extracts from Tunisian Rhus pentaphyllum 
For centuries, plants have been used in traditional medicines and there has been recent interest in the chemopreventive properties of compounds derived from plants. In the present study, we investigated the antibutyrylcholinestrasic (anti-BuChE) and antioxidant (against some free radicals) activities of extracts from Rhus pentaphyllum. Aqueous extracts were prepared from powdered R. pentaphyllum roots, leaves and seeds and characterized for the presence of tannins, flavonoids and coumarins. Seeds aqueous extract contained the highest quantities of both flavonoids and tannins (21.12% and 17.45% respectively). In the same way, seeds extracts displayed remarkable inhibition against BuChE over 95%, at 100 μg/ml and with IC50 0.74 μg/ml. In addition, compared to leaves and roots extracts, seeds aqueous extract revealed relatively strong antiradical activity towards the ABTS.+ (IC50 = 0.25 μg/ml) and DPPH (IC50 = 2.71 μg/ml) free radicals and decreased significantly the reactive oxygen species such O2.- (IC50 = 2.9 μg/ml) formation evaluated by the non-enzymatic generating O2.- system (Nitroblue tetrazolium/riboflavine). These data suggest that the anti-BuChE activities mechanism of these extracts occurs through a free radical scavenging capacities.
The present study indicates that extracts of Rhus pentaphyllum leaves, seeds and roots are a significant source of compounds, such as tannins, flavonoids and coumarins, with anti-BuChE and antioxidant activities, and thus may be useful for chemoprevention.
doi:10.1186/1476-0711-10-32
PMCID: PMC3224538  PMID: 21880140
Rhus pentaphyllum; anti-Butyrylcholinesterasic activity; free radical scavenging activity; antioxidant activity
10.  Central venous catheter-related bacteremia caused by Kocuria kristinae: Case report and review of the literature 
Kocuria species are unusual human pathogens isolated most commonly from immunocompromised hosts, such as transplant recipients and cancer patients undergoing chemotherapy, or from patients with chronic medical conditions. A case of catheter-related bacteremia with pulmonary septic emboli in a pregnant adult female without chronic medical conditions is described. A review of other reported Kocuria infections is provided.
doi:10.1186/1476-0711-10-31
PMCID: PMC3184040  PMID: 21864336
11.  Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac 
Background
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in S. aureus strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (DcRS) S. aureus strains.
Methods
Transcriptional alterations in response to growth with diclofenac were measured using S. aureus gene expression microarrays and quantitative real-time PCR. Antimicrobial susceptibility was determined by agar diffusion MICs and gradient plate analysis. Ciprofloxacin accumulation was measured by fluorescence spectrophotometry.
Results
Growth of S. aureus strain COL with 80 μg/ml (0.2 × MIC) of diclofenac resulted in the significant alteration by ≥2-fold of 458 genes. These represented genes encoding proteins for transport and binding, protein and DNA synthesis, and the cell envelope. Notable alterations included the strong down-regulation of antimicrobial efflux pumps including mepRAB and a putative emrAB/qacA-family pump. Diclofenac up-regulated sigB (σB), encoding an alternative sigma factor which has been shown to be important for antimicrobial resistance. Staphylococcus aureus microarray metadatabase (SAMMD) analysis further revealed that 46% of genes differentially-expressed with diclofenac are also σB-regulated. Diclofenac altered S. aureus susceptibility to multiple antibiotics in a strain-dependent manner. Susceptibility increased for ciprofloxacin, ofloxacin and norfloxacin, decreased for oxacillin and vancomycin, and did not change for tetracycline or chloramphenicol. Mutation to DcRS did not affect susceptibility to the above antibiotics. Reduced ciprofloxacin MICs with diclofenac in strain BB255, were not associated with increased drug accumulation.
Conclusions
The results of this study suggest that diclofenac influences antibiotic susceptibility in S. aureus, in part, by altering the expression of regulatory and structural genes associated with cell wall biosynthesis/turnover and transport.
doi:10.1186/1476-0711-10-30
PMCID: PMC3158543  PMID: 21774834
Diclofenac; S. aureus; antibiotic resistance; non-steroidal anti-inflammatory drugs (NSAIDs)
12.  Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens 
Background
The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The discovery of a new efflux pump inhibitor could extend the useful lifetime of some antibiotics.
Methods
In this study, the MICs of thymoquinone (TQ), tetracycline and benzalkonium chloride (BC) were determined in absence and in presence of a sub-MIC doses of thymoquinone (1/2 MIC). In addition the 4,6-diamidino-2-phenylindole (DAPI) efflux assay was carried out to determine the effect of TQ on DAPI cells accumulation.
Results
TQ induced a selective antimicrobial activity. Its synergic effect resulted in at least a 4-fold potentiation of the tested antibiotics and antiseptic. In addition, TQ inhibited the DAPI efflux activity in a concentration-dependent manner. The rate of DAPI accumulation in clinical isolates was enhanced with TQ (0 to 200 μg/ml). There is also a decrease in loss of DAPI from bacteria in the presence of TQ. The concentration causing 50% of DAPI efflux inhibition after 15 minutes was approximately 59 μg/ml for Pseudomonas aeroginosa and 100 μg/ml and Staphylococcus aureus respectively.
Conclusions
TQ possesses a selective antibacterial activity against oral bacteria. It is therefore suggested that TQ could be used as a source of natural products with resistance-modifying activity. Further investigation is needed to assess their clinical relevance.
doi:10.1186/1476-0711-10-29
PMCID: PMC3146813  PMID: 21707998
13.  Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus 
Background
Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus.
Methods
16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis.
Results
The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach.
Conclusions
The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus.
doi:10.1186/1476-0711-10-28
PMCID: PMC3151204  PMID: 21702978
phylogenetic framework; signature sequences; genetic heterogeneity
14.  Comparative diffusion assay to assess efficacy of topical antimicrobial agents against Pseudomonas aeruginosa in burns care 
Background
Severely burned patients may develop life-threatening nosocomial infections due to Pseudomonas aeruginosa, which can exhibit a high-level of resistance to antimicrobial drugs and has a propensity to cause nosocomial outbreaks. Antiseptic and topical antimicrobial compounds constitute major resources for burns care but in vitro testing of their activity is not performed in practice.
Results
In our burn unit, a P. aeruginosa clone multiresistant to antibiotics colonized or infected 26 patients over a 2-year period. This resident clone was characterized by PCR based on ERIC sequences. We investigated the susceptibility of the resident clone to silver sulphadiazine and to the main topical antimicrobial agents currently used in the burn unit. We proposed an optimized diffusion assay used for comparative analysis of P. aeruginosa strains. The resident clone displayed lower susceptibility to silver sulphadiazine and cerium silver sulphadiazine than strains unrelated to the resident clone in the unit or unrelated to the burn unit.
Conclusions
The diffusion assay developed herein detects differences in behaviour against antimicrobials between tested strains and a reference population. The method could be proposed for use in semi-routine practice of medical microbiology.
doi:10.1186/1476-0711-10-27
PMCID: PMC3146812  PMID: 21702921
Pseudomonas aeruginosa; burns; silver sulphadiazine; antiseptics; ERIC-PCR; diffusion assay
15.  Bactericidal activity of oxacillin and glycopeptides against Staphylococcus aureus in patients with endocarditis: Looking for a relationship between tolerance and outcome 
Background
There is no clear relationship between in vitro bactericidal activity tests and clinical outcome. We studied bactericidal activity of oxacillin, vancomycin and teicoplanin against Staphylococcus aureus isolates in patients with endocarditis and then we sought to determine if there was a relationship between in vitro bactericidal activity and clinical outcome.
Methods
Minimal bacteriostatic and minimal bactericidal concentrations were determined for Staphylococcus aureus strains isolated from patients with endocarditis following standardized methods. Medical records were reviewed retrospectively to collect data on antimicrobial susceptibility at admission, antimicrobial therapy, need for surgery, embolic events and outcome.
Results and Discussion
Sixty-two Staphylococcus aureus strains were studied in 62 patients with endocarditis. Overall, 91.9% definite, 21% methicillin resistant and 72.6% cured. Surgery was performed in 32.3% and embolic events were documented in 64.5%. Tolerance to oxacillin and teicoplanin was more common than vancomycin tolerance among methicillin susceptible Staphylococcus aureus. Among methicillin resistant Staphylococcus aureus teicoplanin was shown to have a higher rate of tolerance than vancomycin. No statistically significant differences on clinical outcome between oxacillin tolerant and oxacillin non tolerant Staphylococcus aureus infections were observed. Tolerance to oxacillin did not adversely affect clinical outcomes of patients with methicillin susceptible Staphylococcus aureus endocarditis treated with a combination of antimicrobials including oxacillin. The cure rate was significantly lower among patients with methicillin resistant Staphylococcus aureus endocarditis.
Conclusions
In vitro bactericidal test results were not valid predictors of clinical outcome. Physicians need to use additional parameters when treating patients with staphylococcal endocarditis.
doi:10.1186/1476-0711-10-26
PMCID: PMC3126696  PMID: 21658248
16.  Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains 
Background
There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.
Methods and Results
The activity of the standard antibiotics and compounds on reference methicillin-sensitive and resistant strains of S. aureus were determined using the macrodilution broth method. The minimum inhibitory concentration (MIC) of the compounds was compared with that of the standard antibiotics. The interaction between any two antimicrobial agents was estimated by calculating the fractional inhibitory concentration (FIC index) of the combination. The various combinations of antibiotics and compounds reduced the MIC to a range of 0.05 to 50%.
Conclusion
Pentacyclic triterpenoids have shown anti-staphylococcal activities and although individually weaker than common antibiotics produced from bacteria and fungi, synergistically these compounds may use different mechanism of action or pathways to exert their antimicrobial effects, as implicated in the lowered MICs. Therefore, the use of current antibiotics could be maintained in their combination with plant-derived antibacterial agents as a therapeutic option in the treatment of S. aureus infections.
doi:10.1186/1476-0711-10-25
PMCID: PMC3127748  PMID: 21658242
17.  Variable antibiotic susceptibility patterns among Streptomyces species causing actinomycetoma in man and animals 
Background
Drug therapy is recommended in conjunction with surgery in treatment of actinomycetoma. The specific prescription depends on the type of bacteria (actinomycetoma) or fungi (eumycetoma) causing the disease and their in vitro antimicrobial susceptibility.
Objectives
To investigate the antimicrobial susceptibility among isolates of Streptomyces spp. isolated from cases of actinomycetoma in man and animals in Sudan.
Methods
Streptomyces strains (n = 18) isolated from cases of actinomycetoma were tested in vitro against 15 commonly prescribed antibacterial agents using MIC agar dilution method as per standard guidelines.
Results
Streptomyces strains isolated from actinomycetoma fall into various phenotypic groups. All of the strains were inhibited by novobiocin (8 μg/mL), gentamycin (8, 32 μg/mL) and doxycycline (32 μg/mL). Fusidic acid (64 μg/mL) inhibited 94.4% of the strains; bacitracin, streptomycin, cephaloridine, clindamycin, ampicillin, rifampicin and tetracycline (64 μg/mL) inhibited between 61.1 and 77.8% of the strains. All strains were found resistant to amphotericin B (64 μg/mL), penicillin (20 μg/mL) and sulphamethoxazole (64 μg/mL).
Conclusions
Saprophytic Streptomyces spp. cause actinomycetoma in man and animal belong to separate phenotypes and have a wide range of susceptibility patterns to antimicrobial agents, which pose a lot of difficulties in selecting effective in vivo treatment for actinomycetoma.
doi:10.1186/1476-0711-10-24
PMCID: PMC3133538  PMID: 21645380
Antibiotic susceptibility; Streptomyces; Actinomycetoma; Sudan
18.  CTX-M-14 β-lactamase-producing Citrobacter freundii isolated in Venezuela 
A clinical isolate of C. freundii with reduced susceptibility to extended-spectrum β-lactams from a woman with cystocele associated with recurrent urinary tract infection was analyzed. Susceptibility tests, double disk synergy tests (DDST) and enzymatic activity by the agar iodometric method suggested the presence of ESBLs. Conjugation experiments revealed the presence of a large conjugative plasmid (pLM07/20) with an exclusive FrepB replicon type (IncF/FIB). PCR analysis and sequencing confirmed the presence of the blaCTX-M-14 gene in the pLM07/20 from C. freundii.LM07/10. Although this is the first report of CTX-M-14 in Venezuela, we alert the medical community that future increase of these β-lactamases in our city could be due to dissemination of plasmids into bacterial populations.
doi:10.1186/1476-0711-10-22
PMCID: PMC3121586  PMID: 21627834
Citrobacter freundii; Extended-spectrum β-lactamases; CTX-M-14, plasmid; FrepB replicon
19.  Antifungal activity of redox-active benzaldehydes that target cellular antioxidation 
Background
Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy.
Methods
Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI).
Results
Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes.
Conclusions
Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
doi:10.1186/1476-0711-10-23
PMCID: PMC3127747  PMID: 21627838
20.  Impact of accessory gene regulator (agr) dysfunction on vancomycin pharmacodynamics among Canadian community and health-care associated methicillin-resistant Staphylococcus aureus 
Background
The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA.
Methods
40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 106 and 108 cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model.
Results
15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 106 cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 108 cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log10 CFU/ml for agr functional vs. 2.41 log10 CFU/ml for agr dysfunctional MRSA (p = 0.0007).
Conclusions
Dysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.
doi:10.1186/1476-0711-10-20
PMCID: PMC3120648  PMID: 21599878
21.  In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases 
Background
Suppression of immune system in treated cancer patients may lead to secondary infections that obviate the need of antibiotics. In the present study, an attempt was made to understand the occurrence of secondary infections in immuno-suppressed patients along with herbal control of these infections with the following objectives to: (a) isolate the microbial species from the treated oral cancer patients along with the estimation of absolute neutrophile counts of patients (b) assess the in vitro antimicrobial activity medicinal plants against the above clinical isolates.
Methods
Blood and oral swab cultures were taken from 40 oral cancer patients undergoing treatment in the radiotherapy unit of Regional Cancer Institute, Pt. B.D.S. Health University,
Rohtak, Haryana. Clinical isolates were identified by following general microbiological, staining and biochemical methods. The absolute neutrophile counts were done by following the standard methods. The medicinal plants selected for antimicrobial activity analysis were Asphodelus tenuifolius Cav., Asparagus racemosus Willd., Balanites aegyptiaca L., Cestrum diurnum L., Cordia dichotoma G. Forst, Eclipta alba L., Murraya koenigii (L.) Spreng. , Pedalium murex L., Ricinus communis L. and Trigonella foenum graecum L. The antimicrobial efficacy of medicinal plants was evaluated by modified Kirby-Bauer disc diffusion method. MIC and MFC were investigated by serial two fold microbroth dilution method.
Results
Prevalent bacterial pathogens isolated were Staphylococcus aureus (23.2%), Escherichia coli (15.62%), Staphylococcus epidermidis (12.5%), Pseudomonas aeruginosa (9.37%), Klebsiella pneumonia (7.81%), Proteus mirabilis (3.6%), Proteus vulgaris (4.2%) and the fungal pathogens were Candida albicans (14.6%), Aspergillus fumigatus (9.37%). Out of 40 cases, 35 (87.5%) were observed as neutropenic. Eight medicinal plants (A. tenuifolius, A. racemosus, B. aegyptiaca, E. alba, M. koenigii, P. murex R. communis and T. foenum graecum) showed significant antimicrobial activity (P < .05) against most of the isolates. The MIC and MFC values were ranged from 31 to 500 μg/ml. P. aeruginosa was observed highest susceptible bacteria (46.6%) on the basis of susceptible index.
Conclusion
It can be concluded that treated oral cancer patients were neutropenic and prone to secondary infection of microbes. The medicinal plant can prove as effective antimicrobial agent to check the secondary infections in treated cancer patients.
doi:10.1186/1476-0711-10-21
PMCID: PMC3121585  PMID: 21599889
22.  A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs 
Background
The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs) as bactericidal agent on MB45.
Methods
Diluted Luria broth/Agar (10-3) media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs.
Results and conclusions
The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain.
doi:10.1186/1476-0711-10-19
PMCID: PMC3118321  PMID: 21595893
23.  Pathogenicity island cag, vacA and IS605 genotypes in Mexican strains of Helicobacter pylori associated with peptic ulcers 
Background
Helicobacter pylori is associated with chronic gastritis, peptic ulcers, and gastric cancer. Two major virulence factors of H. pylori have been described: the pathogenicity island cag (cag PAI) and the vacuolating cytotoxin gene (vacA). Virtually all strains have a copy of vacA, but its genotype varies. The cag PAI is a region of 32 genes in which the insertion of IS605 elements in its middle region has been associated with partial or total deletions of it that have generated strains with varying virulence. Accordingly, the aim of this work was to determine the cag PAI integrity, vacA genotype and IS605 status in groups of isolates from Mexican patients with non-peptic ulcers (NPU), non-bleeding peptic ulcers (NBPU), and bleeding peptic ulcers (BPU).
Methods
The cag PAI integrity was performed by detection of eleven targeted genes along this locus using dot blot hybridization and PCR assays. The vacA allelic, cag PAI genotype 1 and IS605 status were determined by PCR analysis.
Results
Groups of 16-17 isolates (n = 50) from two patients with NPU, NBPU, and BPU, respectively, were studied. 90% (45/50) of the isolates harbored a complete cag PAI. Three BPU isolates lacked the cag PAI, and two of the NBPU had an incomplete cag PAI: the first isolate was negative for three of its genes, including deletion of the cagA gene, whereas the second did not have the cagM gene. Most of the strains (76%) had the vacA s1b/m1 genotype; meanwhile the IS605 was not present within the cag PAI of any strain but was detected elsewhere in the genome of 8% (4/50).
Conclusion
The patients had highly virulent strains since the most of them possessed a complete cag PAI and had a vacA s1b/m1 genotype. All the isolates presented the cag PAI without any IS605 insertion (genotype 1). Combined vacA genotypes showed that 1 NPU, 2 NBPU, and 1 BPU patients (66.6%) had a mixed infection; coexistence of H. pylori strains with different cag PAI status was observed in 1 NBPU and 2 BPU (50%) of the patients, but only two of these patients (NBPU and BPU) had different vacA genotypes.
doi:10.1186/1476-0711-10-18
PMCID: PMC3118320  PMID: 21569518
Helicobacter pylori; cag PAI; vacA; peptic ulcers; Mexico
24.  Infective endocarditis caused by Arcanobacterium haemolyticum: a case report 
Arcanobacterium haemolyticum is an organism that commonly causes pharyngitis and wound infections. It does not usually cause systemic invasive disease. The organism presents a difficult diagnostic problem because the Clinical Microbiology laboratory has a propensity to view them as diphtheroid organisms of the Corynebacterium species, thus contaminants or normal flora. We describe a case of a 21-year-old female who had endocarditis with cerebral emboli due to Arcanobacterium haemolyticum. This rare condition is associated with significant mortality and to the best of our knowledge; this is the first successfully treated case of A. haemolyticum endocarditis complicated by embolic phenomenon.
doi:10.1186/1476-0711-10-17
PMCID: PMC3103420  PMID: 21569379
25.  Heterogeneous vancomycin-intermediate susceptibility in a community-associated methicillin-resistant Staphylococcus aureus epidemic clone, in a case of Infective Endocarditis in Argentina 
Background
Community-Associated Methicillin Resistant Staphylococcus aureus (CA-MRSA) has traditionally been related to skin and soft tissue infections in healthy young patients. However, it has now emerged as responsible for severe infections worldwide, for which vancomycin is one of the mainstays of treatment. Infective endocarditis (IE) due to CA-MRSA with heterogeneous vancomycin-intermediate susceptibility-(h-VISA) has been recently reported, associated to an epidemic USA 300 CA-MRSA clone.
Case Presentation
We describe the occurrence of h-VISA phenotype in a case of IE caused by a strain belonging to an epidemic CA-MRSA clone, distinct from USA300, for the first time in Argentina. The isolate h-VISA (SaB2) was recovered from a patient with persistent bacteraemia after a 7-day therapy with vancomycin, which evolved to fatal case of IE complicated with brain abscesses. The initial isolate-(SaB1) was fully vancomycin susceptible (VSSA). Although MRSA SaB2 was vancomycin susceptible (≤2 μg/ml) by MIC (agar and broth dilution, E-test and VITEK 2), a slight increase of MIC values between SaB1 and SaB2 isolates was detected by the four MIC methods, particularly for teicoplanin. Moreover, Sab2 was classified as h-VISA by three different screening methods [MHA5T-screening agar, Macromethod-E-test-(MET) and by GRD E-test] and confirmed by population analysis profile-(PAP). In addition, a significant increase in cell-wall thickness was revealed for SaB2 by electron microscopy. Molecular typing showed that both strains, SaB1 and SaB2, belonged to ST5 lineage, carried SCCmecIV, lacked Panton-Valentine leukocidin-(PVL) genes and had indistinguishable PFGE patterns (subtype I2), thereby confirming their isogenic nature. In addition, they were clonally related to the epidemic CA-MRSA clone (pulsotype I) detected in our country.
Conclusions
This report demonstrates the ability of this epidemic CA-MRSA clone, disseminated in some regions of Argentina, to produce severe and rapidly fatal infections such as IE, in addition to its ability to acquire low-level vancomycin resistance; for these reasons, it constitutes a new challenge for the Healthcare System of this country.
doi:10.1186/1476-0711-10-15
PMCID: PMC3111347  PMID: 21527033

Results 1-25 (38)