PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Trends in antibacterial resistance among Streptococcus pneumoniae isolated in the USA: update from PROTEKT US Years 1–4 
Background
The increasing prevalence of resistance to established antibiotics among key bacterial respiratory tract pathogens, such as Streptococcus pneumoniae, is a major healthcare problem in the USA. The PROTEKT US study is a longitudinal surveillance study designed to monitor the susceptibility of key respiratory tract pathogens in the USA to a range of commonly used antimicrobials. Here, we assess the geographic and temporal trends in antibacterial resistance of S. pneumoniae isolates from patients with community-acquired respiratory tract infections collected between Year 1 (2000–2001) and Year 4 (2003–2004) of PROTEKT US.
Methods
Antibacterial minimum inhibitory concentrations were determined centrally using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method; susceptibility was defined according to CLSI interpretive criteria. Macrolide resistance genotypes were determined by polymerase chain reaction.
Results
A total of 39,495 S. pneumoniae isolates were collected during 2000–2004. The percentage of isolates resistant to erythromycin, penicillin, levofloxacin, and telithromycin were 29.3%, 21.2%, 0.9%, and 0.02%, respectively, over the 4 years, with marked regional variability. The proportion of isolates exhibiting multidrug resistance (includes isolates known as penicillin-resistant S. pneumoniae and isolates resistant to ≥ 2 of the following antibiotics: penicillin; second-generation cephalosporins, e.g. cefuroxime; macrolides; tetracyclines; and trimethoprim-sulfamethoxazole) remained stable at ~30% over the study period. Overall mef(A) was the most common macrolide resistance mechanism. The proportion of mef(A) isolates decreased from 68.8% to 62.3% between Year 1 and Year 4, while the percentage of isolates carrying both erm(B) and mef(A) increased from 9.7% to 18.4%. Over 99% of the erm(B)+mef(A)-positive isolates collected over Years 1–4 exhibited multidrug resistance. Higher than previously reported levels of macrolide resistance were found for mef(A)-positive isolates.
Conclusion
Over the first 4 years of PROTEKT US, penicillin and erythromycin resistance among pneumococcal isolates has remained high. Although macrolide resistance rates have stabilized, the prevalence of clonal isolates, with a combined erm(B) and mef(A) genotype together with high-level macrolide and multidrug resistance, is increasing, and their spread may have serious health implications. Telithromycin and levofloxacin both showed potent in vitro activity against S. pneumoniae isolates irrespective of macrolide resistance genotype.
doi:10.1186/1476-0711-7-1
PMCID: PMC2262084  PMID: 18190701
2.  Mechanisms, molecular and sero-epidemiology of antimicrobial resistance in bacterial respiratory pathogens isolated from Japanese children 
Background
The clinical management of community-acquired respiratory tract infections (RTIs) is complicated by the increasing worldwide prevalence of antibacterial resistance, in particular, β-lactam and macrolide resistance, among the most common causative bacterial pathogens. This study aimed to determine the mechanisms and molecular- and sero-epidemiology of antibacterial resistance among the key paediatric respiratory pathogens in Japan.
Methods
Isolates were collected at 18 centres in Japan during 2002 and 2003 from children with RTIs as part of the PROTEKT surveillance programme. A proportion of Haemophilus influenzae isolates was subjected to sequencing analysis of the ftsI gene; phylogenetic relatedness was assessed using multilocus sequence typing. Streptococcus pneumoniae isolates were screened for macrolide-resistance genotype by polymerase chain reaction and serotyped using the capsular swelling method. Susceptibility of isolates to selected antibacterials was performed using CLSI methodology.
Results and Discussion
Of the 557 H. influenzae isolates collected, 30 (5.4%) were β-lactamase-positive [BL+], 115 (20.6%) were BL-nonproducing ampicillin-resistant (BLNAR; MIC ≥ 4 mg/L) and 79 (14.2%) were BL-nonproducing ampicillin-intermediate (BLNAI; MIC 2 mg/L). Dabernat Group III penicillin binding protein 3 (PBP3) amino acid substitutions in the ftsI gene were closely correlated with BLNAR status but phylogenetic analysis indicated marked clonal diversity. PBP mutations were also found among BL+ and BL-nonproducing ampicillin-sensitive isolates. Of the antibacterials tested, azithromycin and telithromycin were the most active against H. influenzae (100% and 99.3% susceptibility, respectively). A large proportion (75.2%) of the 468 S. pneumoniae isolates exhibited macrolide resistance (erythromycin MIC ≥ 1 mg/L); erm(B) was the most common macrolide resistance genotype (58.8%), followed by mef(A) (37.2%). The most common pneumococcal serotypes were 6B (19.7%), 19F (13.7%), 23F (13.5%) and 6A (12.8%). Telithromycin and amoxicillin-clavulanate were the most active antibacterials against S. pneumoniae (99.8% and 99.6% susceptibility, respectively).
Conclusion
Approximately one-third of H. influenzae isolates from paediatric patients in Japan are BLNAI/BLNAR, mainly as a result of clonally diverse PBP3 mutations. Together with the continued high prevalence of pneumococcal macrolide resistance, these results may have implications for the clinical management of paediatric RTIs in Japan.
doi:10.1186/1476-0711-6-7
PMCID: PMC2020463  PMID: 17697316
3.  Antibiotic activity of telithromycin and comparators against bacterial pathogens isolated from 3,043 patients with acute exacerbation of chronic bronchitis 
Background
Antimicrobial therapy is considered an important component in the medical management of most patients with acute exacerbation of chronic bronchitis (AECB). The three predominant bacterial species isolated are nontypeable Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae. Staphylococcus aureus is also frequently isolated while atypical bacteria are thought to cause up to 10% of exacerbations. Antibacterial resistance is increasing worldwide and little surveillance data exist concerning pathogens isolated from patients with AECB.
Methods
This study examines the prevalence of antibacterial resistance in isolates obtained from patients with clinically diagnosed AECB. A total of 3043 isolates were obtained from 85 centres in 29 countries, between 1999–2003, and were tested against the new ketolide telithromycin and a panel of commonly used antibiotics.
Results and Discussion
Of the S. pneumoniae isolates, 99.9% were susceptible to telithromycin, but only 71% were susceptible to erythromycin and 75.3% to penicillin. Of the H. influenzae isolates, 99.6% were susceptible to telithromycin. 11.7% of these isolates produced β-lactamase. Almost 10% of S. pneumoniae were multidrug-resistant; 99.0% of these isolates were susceptible to telithromycin. Telithromycin also demonstrated good in vitro activity against M. catarrhalis (MIC90 = 0.12 mg/L) and was the most active compound against methicillin-susceptible S. aureus (98.9% susceptible).
Conclusion
Telithromycin demonstrated similar or better activity against the bacterial species investigated than the other agents, with the most complete coverage overall. These species are the predominant causative bacterial pathogens in AECB and thus the spectrum of activity of telithromycin makes it a potential alternative for the empirical treatment of AECB.
doi:10.1186/1476-0711-4-5
PMCID: PMC555545  PMID: 15755326

Results 1-3 (3)