PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera 
Annals of Botany  2012;110(3):713-729.
Background and Aims
Oil-producing flowers related to oil-bee pollination are a major innovation in Neotropical and Mexican Iridaceae. In this study, phylogenetic relationships were investigated among a wide array of New World genera of the tribes Sisyrinchieae, Trimezieae and Tigridieae (Iridaceae: Iridoideae) and the evolution of floral glandular structures, which are predominantly trichomal elaiophores, was examined in relation to the diversification of New World Iridaceae.
Methods
Phylogenetic analyses based on seven molecular markers obtained from 97 species were conducted to produce the first extensive phylogeny of the New World tribes of subfamily Iridoideae. The resulting phylogenetic hypothesis was used to trace the evolutionary history of glandular structures present in the flowers of numerous species in each tribe. Hypotheses of differential diversification rates among lineages were also investigated using both topological and Binary-State Speciation and Extinction methods.
Key Results and Conclusions
Floral glandular structures and especially trichomal elaiophores evolved multiple times independently in the American tribes of Iridoideae. The distribution pattern of species displaying glandular trichomes across the phylogeny reveals lability in the pollination system and suggests that these structures may have played a significant role in the diversification of the Iridoideae on the American continent.
doi:10.1093/aob/mcs134
PMCID: PMC3400458  PMID: 22782239
Elaiophores; glandular trichomes; Iridoideae; nectaries; pollination systems; Sisyrinchieae; Tigridieae; Trimezieae
2.  Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus 
Annals of Botany  2011;107(8):1287-1312.
Background and Aims
Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined.
Methods
Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species.
Key Results and Conclusions
Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing.
doi:10.1093/aob/mcr080
PMCID: PMC3101146  PMID: 21527419
Oil-bee pollination; glandular trichomes; elaiophores; lipids; phylogeography; Sisyrinchieae; Olsynium; Solenomelus
3.  The influence of tetrad shape and intersporal callose wall formation on pollen aperture pattern ontogeny in two eudicot species 
Annals of Botany  2010;106(4):557-564.
Background and Aims
In flowering plants, microsporogenesis is accompanied by various types of cytoplasmic partitioning (cytokinesis). Patterns of male cytokinesis are suspected to play a role in the diversity of aperture patterns found in pollen grains of angiosperms. The relationships between intersporal wall formation, tetrad shape and pollen aperture pattern ontogeny are studied.
Methods
A comparative analysis of meiosis and aperture distribution was performed within tetrads in two triporate eudicot species with contrasting aperture arrangements within their tetrads [Epilobium roseum (Onagraceae) and Paranomus reflexus (Proteaceae)].
Key Results and Conclusions
Intersporal wall formation is a two-step process in both species. Cytokinesis is first achieved by the formation of naked centripetal cell plates. These naked cell plates are then covered by additional thick, localized callose deposits that differ in location between the two species. Apertures are finally formed in areas in which additional callose is deposited on the cell plates. The recorded variation in tetrad shape is correlated with variations in aperture pattern, demonstrating the role of cell partitioning in aperture pattern ontogeny.
doi:10.1093/aob/mcq152
PMCID: PMC2944975  PMID: 20685726
Microsporogenesis; tetrad shape; aperture; callose; Epilobium roseum; Paranomus reflexus
4.  Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae) 
Annals of Botany  2009;104(5):809-822.
Background and Aims
Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty.
Methods
The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors.
Key Results
In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla.
Conclusions
It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait.
doi:10.1093/aob/mcp162
PMCID: PMC2749547  PMID: 19608573
Delphinieae; development; evolution; evo-devo; nectar spurs; ontogenic spiral; Ranunculaceae; zygomorphy
5.  Evolutionary Trends in the Flowers of Asteridae: Is Polyandry an Alternative to Zygomorphy? 
Annals of Botany  2008;102(2):153-165.
Background and Aims
Floral symmetry presents two main states in angiosperms, actinomorphy (polysymmetry or radial symmetry) and zygomorphy (monosymmetry or bilateral symmetry). Transitions from actinomorphy to zygomorphy have occurred repeatedly among flowering plants, possibly in coadaptation with specialized pollinators. In this paper, the rules controlling the evolution of floral symmetry were investigated to determine in which architectural context zygomorphy can evolve.
Methods
Floral traits potentially associated with perianth symmetry shifts in Asteridae, one of the major clades of the core eudicots, were selected: namely the perianth merism, the presence and number of spurs, and the androecium organ number. The evolution of these characters was optimized on a composite tree. Correlations between symmetry and the other morphological traits were then examined using a phylogenetic comparative method.
Key Results
The analyses reveal that the evolution of floral symmetry in Asteridae is conditioned by both androecium organ number and perianth merism and that zygomorphy is a prerequisite to the emergence of spurs.
Conclusions
The statistically significant correlation between perianth zygomorphy and oligandry suggests that the evolution of floral symmetry could be canalized by developmental or spatial constraint. Interestingly, the evolution of polyandry in an actinomorphic context appears as an alternative evolutionary pathway to zygomorphy in Asteridae. These results may be interpreted either in terms of plant–pollinator adaptation or in terms of developmental or physical constraints. The results are discussed in relation to current knowledge about the molecular bases underlying floral symmetry.
doi:10.1093/aob/mcn082
PMCID: PMC2712368  PMID: 18511411
Floral symmetry; architectural constraints; Asteridae; comparative analysis; composite tree; correlated evolution; evolutionary scenario
6.  Evolution of Perianth and Stamen Characteristics with Respect to Floral Symmetry in Ranunculales 
Annals of Botany  2007;100(3):631-640.
Background and Aims
Floral symmetry presents two main states in angiosperms, namely polysymmetry and monosymmetry. Monosymmetry is thought to have evolved several times independently from polysymmetry, possibly in co-adaptation with specialized pollinators. Monosymmetry commonly refers to the perianth, even though associated androecium modifications have been reported. The evolution of perianth symmetry is examined with respect to traits of flower architecture in the Ranunculales, the sister group to all other eudicots, which present a large diversity of floral forms.
Methods
Characters considered were perianth merism, calyx, corolla and androecium symmetry, number of stamens and spurs. Character evolution was optimized on a composite phylogenetic tree of Ranunculales using maximum parsimony.
Key Results
The ancestral state for merism could not be inferred because the basalmost Eupteleaceae lack a perianth and have a variable number of stamens. The Papaveraceae are dimerous, and the five other families share a common trimerous ancestor. Shifts from trimery to dimery (or reverse) are observed. Pentamery evolved in Ranunculaceae. Ranunculales except Eupteleaceae, present a polysymmetric ancestral state. Monosymmetry evolved once within Papaveraceae, Ranunculaceae and Menispermaceae (female flowers only). Oligandry is the ancestral state for all Ranunculales, and polyandry evolved several times independently, in Papaveraceae, Menispermaceae, Berberidaceae and Ranunculaceae, with two reversions to oligandry in the latter. The ancestral state for androecium symmetry is ambiguous for the Ranunculales, while polysymmetry evolved immediately after the divergence of Eupteleaceae. A disymmetric androecium evolved in Papaveraceae. The ancestral state for spurs is none. Multiple spurs evolved in Papaveraceae, Berberidaceae and Ranunculaceae, and single spurs occur in Papaveraceae and Ranunculaceae.
Conclusions
The evolution of symmetry appears disconnected from changes in merism and stamen number, although monosymmetry never evolved in the context of an open ground plan. In bisexual species, monosymmetry evolved coincidently with single spurs, allowing us to propose an evolutionary scenario for Papaveraceae.
doi:10.1093/aob/mcm041
PMCID: PMC2533616  PMID: 17428835
Floral symmetry; Ranunculales; perianth; androecium; stamen; spur; merism; evo-devo

Results 1-6 (6)