Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Nuclear DNA amounts in angiosperms: targets, trends and tomorrow 
Annals of Botany  2011;107(3):467-590.
Background and Aims
The amount of DNA in an unreplicated gametic chromosome complement is known as the C-value and is a key biodiversity character of fundamental significance with many practical and predictive uses. Since 1976, Bennett and colleagues have assembled eight compilations of angiosperm C-values for reference purposes and subsequently these have been pooled into the Angiosperm DNA C-values Database ( Since the last compilation was published in 2005, a large amount of data on angiosperm genome size has been published. It is therefore timely to bring these data together into a ninth compilation of DNA amounts.
The present work lists DNA C-values for 2221 species from 151 original sources (including first values for 1860 species not listed in previous compilations). Combining these data with those published previously shows that C-values are now available for 6287 angiosperm species.
Key Findings
Analysis of the dataset, which is by far the largest of the nine compilations published since 1976, shows that angiosperm C-values are now being generated at the highest rate since the first genome sizes were estimated in the 1950s. The compilation includes new record holders for the smallest (1C = 0·0648 pg in Genlisea margaretae) and largest (1C = 152·23 pg in Paris japonica) genome sizes so far reported, extending the range encountered in angiosperms to nearly 2400-fold. A review of progress in meeting targets set at the Plant Genome Size meetings shows that although representation for genera, geographical regions and some plant life forms (e.g. island floras and parasitic plants) has improved, progress to increase familial representation is still slow. In terms of technique it is now clear that flow cytometry is soon likely to become the only method available for plant genome size estimations. Fortunately, this has been accompanied by numerous careful studies to improve the quality of data generated using this technique (e.g. design of new buffers, increased awareness and understanding of problems caused by cytosolic inhibitors). It is also clear that although the speed of DNA sequencing continues to rise dramatically with the advent of next-generation and third-generation sequencing technologies, ‘complete genome sequencing’ projects are still unable to generate accurate plant genome size estimates.
PMCID: PMC3043933  PMID: 21257716
DNA C-value; nuclear genome size; Plant DNA C-values Database; flow cytometry
2.  Plant genomes. Genome dynamics vol. 4 
Annals of Botany  2009;104(7):145-viii.
PMCID: PMC2778380
3.  Genome size diversity in orchids: consequences and evolution 
Annals of Botany  2009;104(3):469-481.
The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae.
A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 0·33–55·4 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity.
Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable phylogenetic gaps which have been highlighted by the current study.
PMCID: PMC2720655  PMID: 19168860
AFLP; C-value; chromosome; evolution; genome size; guard cell size; Orchidaceae; Robertsonian fission; Robertsonian fusion
4.  Chromosome diversity and evolution in Liliaceae 
Annals of Botany  2008;103(3):459-475.
Background and Aims
There is an extensive literature on the diversity of karyotypes found in genera within Liliaceae, but there has been no attempt to analyse these data within a robust phylogenetic framework. In part this has been due to a lack of consensus on which genera comprise Liliaceae and the relationships between them. Recently, however, this changed with the proposal for a relatively broad circumscription of Liliaceae comprising 15 genera and an improved understanding of the evolutionary relationships between them. Thus there is now the opportunity to examine patterns and trends in chromosome evolution across the family as a whole.
Based on an extensive literature survey, karyo-morphometric features for 217 species belonging to all genera in Liliaceae sensu the APG (Angiosperm Phylogeny Group) were obtained. Included in the data set were basic chromosome number, ploidy, chromosome total haploid length (THL) and 13 different measures of karyotype asymmetry. In addition, genome size estimates for all species studied were inferred from THLs using a power regression model constructed from the data set. Trends in karyotype evolution were analysed by superimposing the karyological data onto a phylogenetic framework for Liliaceae.
Key Results and Conclusions
Combining the large amount of data enabled mean karyotypes to be produced, highlighting marked differences in karyotype structure between the 15 genera. Further differences were noted when various parameters for analysing karyotype asymmetry were assessed. By examining the effects of increasing genome size on karyotype asymmetry, it was shown that in many but not all (e.g. Fritillaria and all of Tulipeae) species, the additional DNA was added preferentially to the long arms of the shorter chromosomes rather than being distributed across the whole karyotype. This unequal pattern of DNA addition is novel, contrasting with the equal and proportional patterns of DNA increase previously reported. Overall, the large-scale analyses of karyotype features within a well-supported phylogenetic framework enabled the most likely patterns of chromosome evolution in Liliaceae to be reconstructed, highlighting diverse modes of karyotype evolution, even within this comparatively small monocot family.
PMCID: PMC2707325  PMID: 19033282
C-value; chromosomes; genome size; karyotype asymmetry; karyotype evolution; Liliaceae; Liliales; polyploidy
5.  Plant Genome Horizons: Michael Bennett's Contribution to Genome Research 
Annals of Botany  2008;101(6):737-746.
PMCID: PMC2710207  PMID: 18411257
6.  The Ups and Downs of Genome Size Evolution in Polyploid Species of Nicotiana (Solanaceae) 
Annals of Botany  2008;101(6):805-814.
In studies looking at individual polyploid species, the most common patterns of genomic change are that either genome size in the polyploid is additive (i.e. the sum of parental genome donors) or there is evidence of genome downsizing. Reports showing an increase in genome size are rare. In a large-scale analysis of 3008 species, genome downsizing was shown to be a widespread biological response to polyploidy. Polyploidy in the genus Nicotiana (Solanaceae) is common with approx. 40 % of the approx. 75 species being allotetraploid. Recent advances in understanding phylogenetic relationships of Nicotiana species and dating polyploid formation enable a temporal dimension to be added to the analysis of genome size evolution in these polyploids.
Genome sizes were measured in 18 species of Nicotiana (nine diploids and nine polyploids) ranging in age from <200 000 years to approx. 4·5 Myr old, to determine the direction and extent of genome size change following polyploidy. These data were combined with data from genomic in situ hybridization and increasing amounts of information on sequence composition in Nicotiana to provide insights into the molecular basis of genome size changes.
Key Results and Conclusions
By comparing the expected genome size of the polyploid (based on summing the genome size of species identified as either a parent or most closely related to the diploid progenitors) with the observed genome size, four polyploids showed genome downsizing and five showed increases. There was no discernable pattern in the direction of genome size change with age of polyploids, although with increasing age the amount of genome size change increased. In older polyploids (approx. 4·5 million years old) the increase in genome size was associated with loss of detectable genomic in situ hybridization signal, whereas some hybridization signal was still detected in species exhibiting genome downsizing. The possible significance of these results is discussed.
PMCID: PMC2710205  PMID: 18222910
Genome downsizing; genome size; Nicotiana; polyploidy; sequence elimination; Solanaceae

Results 1-6 (6)