Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Verhuellia is a segregate lineage in Piperaceae: more evidence from flower, fruit and pollen morphology, anatomy and development 
Annals of Botany  2010;105(5):677-688.
Background and Aims
The perianthless Piperales, i.e. Saururaceae and Piperaceae, have simple reduced flowers strikingly different from the other families of the order (e.g. Aristolochiaceae). Recent molecular phylogenies proved Verhuellia to be the first branch in Piperaceae, making it a promising subject to study the detailed structure and development of the flowers. Based on recently collected material, the first detailed study since 1872 was conducted with respect to morphology, anatomy and development of the inflorescence, pollen ultrastructure and fruit anatomy.
Original scanning electron microscopy (SEM), transmission electron microscopy (TEM) and light microscopy (LM) observations on Verhuellia lunaria were compared with those of Piperaceae, Saururaceae and fossils.
Key Results
The inflorescence is an indeterminate spike with sessile flowers, each in the axil of a bract, developing in acropetal, helical succession. Flowers consist of two (occasionally three) stamens with basifixed tetrasporangiate anthers and latrorse dehiscence by a longitudinal slit. The gynoecium lacks a style but has 3–4 stigma branches and a single, basal orthotropous and unitegmic ovule. The fruit is a drupe with large multicellular epidermal protuberances. The pollen is very small, inaperturate and areolate, with hemispherical microechinate exine elements.
Despite the superficial similarities with different genera of Piperaceae and Saururaceae, the segregate position of Verhuellia revealed by molecular phylogenetics is supported by morphological, developmental and anatomical data presented here. Unitegmic ovules and inaperturate pollen, which are synapomorphies for the genus Peperomia, are also present in Verhuellia.
PMCID: PMC2859909  PMID: 20237114
Verhuellia lunaria; Piperales; Peperomia; Appomattoxia ancistrophora; floral development; floral anatomy; fruit morphology; pollen morphology; unitegmic ovule; inaperturate pollen
2.  Spikelet structure and development in Cyperoideae (Cyperaceae): a monopodial general model based on ontogenetic evidence 
Annals of Botany  2010;105(4):555-571.
Background and Aims
In Cyperoideae, one of the two subfamilies in Cyperaceae, unresolved homology questions about spikelets remained. This was particularly the case in taxa with distichously organized spikelets and in Cariceae, a tribe with complex compound inflorescences comprising male (co)florescences and deciduous female single-flowered lateral spikelets. Using ontogenetic techniques, a wide range of taxa were investigated, including some controversial ones, in order to find morphological arguments to understand the nature of the spikelet in Cyperoideae. This paper presents a review of both new ontogenetic data and current knowledge, discussing a cyperoid, general, monopodial spikelet model.
Scanning electron microscopy and light microscopy were used to examine spikelets of 106 species from 33 cyperoid genera.
Ontogenetic data presented allow a consistent cyperoid spikelet model to be defined. Scanning and light microscopic images in controversial taxa such as Schoenus nigricans, Cariceae and Cypereae are interpreted accordingly.
Spikelets in all species studied consist of an indeterminate rachilla, and one to many spirally to distichously arranged glumes, each subtending a flower or empty. Lateral spikelets are subtended by a bract and have a spikelet prophyll. In distichously organized spikelets, combined concaulescence of the flowers and epicaulescence (a newly defined metatopic displacement) of the glumes has caused interpretational controversy in the past. In Cariceae, the male (co)florescences are terminal spikelets. Female single-flowered spikelets are positioned proximally on the rachis. To explain both this and the secondary spikelets in some Cypereae, the existence of an ontogenetic switch determining the development of a primordium into flower, or lateral axis is postulated.
PMCID: PMC2850794  PMID: 20197291
3.  Stony Endocarp Dimension and Shape Variation in Prunus Section Prunus 
Annals of Botany  2007;100(7):1585-1597.
Background and Aims
Identification of Prunus groups at subspecies or variety level is complicated by the wide range of variation and morphological transitional states. Knowledge of the degree of variability within and between species is a sine qua non for taxonomists. Here, a detailed study of endocarp dimension and shape variation for taxa of Prunus section Prunus is presented.
The sample size necessary to obtain an estimation of the population mean with a precision of 5 % was determined by iteration. Two cases were considered: (1) the population represents an individual; and (2) the population represents a species. The intra-individual and intraspecific variation of Prunus endocarps was studied by analysing the coefficients of variance for dimension and shape parameters. Morphological variation among taxa was assessed using univariate statistics. The influence of the time of sampling and the level of hydration on endocarp dimensions and shape was examined by means of pairwise t-tests. In total, 14 endocarp characters were examined for five Eurasian plum taxa.
Key Results
All linear measurements and index values showed a low or normal variability on the individual and species level. In contrast, the parameter ‘Vertical Asymmetry’ had high coefficients of variance for one or more of the taxa studied. Of all dimension and shape parameters studied, only ‘Triangle’ differed significantly between mature endocarps of P. insititia sampled with a time difference of 1 month. The level of hydration affected endocarp dimensions and shape significantly.
Index values and the parameters ‘Perimeter’, ‘Area’, ‘Triangle’, ‘Ellipse’, ‘Circular’ and ‘Rectangular’, based on sample sizes and coefficients of variance, were found to be most appropriate for further taxonomic analysis. However, use of one, single endocarp parameter is not satisfactory for discrimination between Eurasian plum taxa, mainly because of overlapping ranges. Before analysing dried endocarps, full hydration is recommended, as this restores the original dimensions and shape.
PMCID: PMC2759235  PMID: 17965026
Prunus section Prunus; Eurasian plums; stony endocarps; dimension and shape variation; index values; mathematical descriptors; morphometrics, archaeobotany

Results 1-3 (3)