Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra 
Annals of Botany  2010;106(3):385-394.
Background and Aims
Cambium reactivation after dormancy and budbreak in deciduous trees requires a supply of mobilized reserve materials. The pathway and mode of transfer of these materials are poorly understood.
Transport of reserve materials during cambium reactivation in Populus nigra was investigated by conventional and immunocytochemical TEM analyses, SDS–PAGE, western blotting and intracellular microinjection of fluorescent dyes.
Key Results
Proteinaceous compounds stored in vacuoles and protein bodies of vascular cells and ray cells disappeared within 3 weeks after cambial reactivation and budbreak. Some of these proteins (32 kDa, 30 kDa and 15 kDa) were labelled by lectin antibodies in SDS–PAGE. The same antibodies were localized to plasmodesmata (PDs) between phloem parenchyma, ray cells and fusiform cambial cells. In addition, proteinaceous particles were localized inside the cytoplasmic sleeves of these PDs during budbreak. During this period, the functional diameter of PDs was about 2·2 nm which corresponds approximately to the Stokes' radius of the detected 15-kDa protein.
Lectin-like reserve proteins or their degradation products seem to be transferred through PDs of phloem parenchyma and rays during cambial reactivation and budbreak. PD transfer of storage proteins is a novelty which supports the concept of symplasmic nutrient supply to the cambial region.
PMCID: PMC2924828  PMID: 20584737
Cambial region; lectins; plasmodesmal trafficking; Populus nigra ‘italica’; size exclusion limit; storage proteins; vascular tissues
2.  Season-associated modifications in symplasmic organization of the cambium in Populus nigra 
Annals of Botany  2010;105(3):375-387.
Background and Aims
Alterations of plasmodesma (PD) connectivity are likely to be very important for plant development. Here, the repetitive division pattern of cambial initials in Populus nigra ‘italica’ was studied to follow the development of the PD network during maturation. Furthermore, seasonal changes were investigated in order to trace indications for developmental and functional adaptations.
Cambium samples of P. nigra twigs, collected in summer, autumn and spring, were chemically fixed for transmission electron microscopy. The parameters, PD density (number of PDs per square micrometre cell-wall area) and PD frequency (total number of PDs per average cell-wall area), were determined for radial and tangential cell interfaces deposited in chronological order.
Key Results
Data sets, presented in plasmodesmograms, show a strong variability in the PD network throughout the year. In summer, high PD numbers occur at the division wall which, after PD doubling by longitudinal fission, decline with further development both at the xylem and the phloem side. In autumn, the number of PDs at the division wall is low as they are in subsequent tangential interfaces. In spring, the first cell division coincides with a massive increase in PD numbers, in particular at the division wall. Only the radial walls between initials maintain their PD equipment throughout the year. This feature can be exploited for identification of the initial layer.
PD networks in the cambium go through a strict developmental programme depending on the season, which is associated with changing functional requirements. For instance, PD numbers correlate with proliferative activity and potential pathways for intercellular signalling. Increases in PD numbers are ascribed to longitudinal fission as a major mechanism, whereas the decline in older derivatives is ascribed to PD degradation.
PMCID: PMC2826250  PMID: 20045870
Cambium; meristem initials; plasmodesmata; Populus nigra ‘italica’; seasonal conditions; ultrastructure

Results 1-2 (2)