Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
Year of Publication
Document Types
1.  Phylogeography and seed dispersal in islands: the case of Rumex bucephalophorus subsp. canariensis (Polygonaceae) 
Annals of Botany  2012;111(2):249-260.
Background and Aims
Rumex bucephalophorus subsp. canariensis is an endemic taxon to Macaronesia with diaspore polymorphism. The origin and colonizing route of this taxon in Macaronesia was studied using molecular data and information on diaspore types.
Amplified fragment length polymorphism (AFLP) was used in 260 plants from 22 populations of R. bucephalophorus subsp. canariensis, four from the Madeiran archipelago and 18 from the Canary archipelago. Diaspore production was analysed in 9–50 plants from each population used for AFLP analysis. One hundred and one plants from the Madeiran archipelago and 375 plants from the Canary Islands were studied. For each plant the type of diaspore produced was recorded.
Key Results
Overall populations had low genetic diversity but they showed a geographical pattern of genetic diversity that was higher in the older eastern islands than in the younger western ones. Two types of dispersible diaspores were found: in the eastern Canary islands (Lanzarote, Fuerteventura and Gran Canaria), plants produced exclusively long-dispersible diaspores, whereas in the western Canary islands (Tenerife, La Gomera, El Hierro) and the Madeiran archipelago plants produced exclusively short-dispersible diaspores. Genetically, the studied populations fell into four main island groups: Lanzarote–Fuerteventura, Gran Canaria, Tenerife–El Hierro and La Gomera–Madeira archipelago.
A Moroccan origin of R. bucephalophorus subsp. canariensis is hypothesized with a colonization route from the eastern to the western islands. In addition, at least one gene flow event from La Gomera to the Madeiran archipelago has taken place. During the colonization process the type of dispersible diaspore changed so that dispersability decreased in populations of the westernmost islands.
PMCID: PMC3555536  PMID: 23267005
Rumex bucephalophorus subsp. canariensis; Polygonaceae; Macaronesia; Canary archipelago; Madeiran archipelago; AFLP; heterocarpy; colonization events; diaspore polymorphism
2.  Endozoochory by beetles: a novel seed dispersal mechanism 
Annals of Botany  2011;107(4):629-637.
Background and Aims
Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles.
Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet.
Key Results
The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits.
A novel plant–animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds.
PMCID: PMC3064545  PMID: 21303784
Beetle; Cytinus hypocistis; Cytinaceae; endozoochory; mutualism, parasitic plant; Pimelia costata; plant–animal interaction; seed dispersal; seed viability; Tenebrionidae
3.  The ant-pollination system of Cytinus hypocistis (Cytinaceae), a Mediterranean root holoparasite 
Annals of Botany  2009;103(7):1065-1075.
Background and Aims
The genus Cytinus is composed of rootless, stemless and leafless parasites whose flowers are only visible during the reproductive period when they arise from the host tissues. Most of the taxa occur in Madagascar and South Africa, where mammal pollination has been suggested for one species. There is only one species in the Mediterranean region, and its pollination system has been unknown. Here, a long-term field observation study is combined with experimental pollination treatments in order to assess the pollination biology and reproductive system in the Mediterranean species Cytinus hypocistis.
Field studies were carried out in six populations in southern Spain over 4 years. Temporal and spatial patterns of variation in the composition and behaviour of floral visitors were characterized. Pollen loads and pollen viability were observed, and exclusion and controlled-pollination treatments were also conducted.
Key Results
Cytinus hypocistis is a self-compatible monoecious species that relies on insects for seed production. Ants were the main visitors, accounting for 97·4 % of total floral visits, and exclusion experiments showed that they act as true pollinators. They consistently touched reproductive organs, carried large pollen loads and transported viable pollen, although the different ant species observed in the flowers differed in their pollination effectiveness. The abundance of flying visitors was surprisingly low, and only the fly Oplisa aterrima contributed to fruit production and cross-pollination.
Mutualistic services by ant are essential for the pollination of Cytinus hypocistis. Although this parasite does not exhibit typical features of the ‘ant-pollination syndrome’, many other characteristics indicate that it is evolving to a more specialized ant-pollination system. The striking interspecific differences in the pollination systems of Mediterranean Cytinus (ant-pollinated) and some South African Cytinus (mammal-pollinated) make this genus an excellent model to investigate the divergent evolution of pollination systems in broadly disjunct areas.
PMCID: PMC2707910  PMID: 19258337
Ant; breeding system; Cytinus hypocistis; Cytinaceae; insects; flies; Mediterranean Basin; parasitic plant; pollination; Rafflesiaceae
4.  Sexual Dimorphism in the Andromonoecious Euphorbia nicaeensis: Effects of Gender and Inflorescence Development 
Annals of Botany  2008;101(5):717-726.
Background and Aims
In andromonoecious taxa with separate floral types along the inflorescence, architectural or plastic effects can simulate floral sexual dimorphism. Both the primary and secondary sexual characteristics of the cyathia of the protogynous andromonoecious species Euphorbia nicaeensis were analysed according to their sex and arrangement on the inflorescence.
The production of male and hermaphrodite cyathia at each inflorescence level was surveyed in two natural populations. The longevity, size, pollen production and viability, and nectar secretion of both types of cyathia were checked between inflorescence levels and between sexes at the only level at which they occur together. This sampling method makes it possible to know whether differences between cyathia types are based on sex or are attributable to inflorescence development.
Key Results
Male cyathia were produced predominantly at the first and second inflorescence levels, whereas at levels 3–5, the cyathia were almost exclusively hermaphrodite. Viable pollen production by male cyathia at the second inflorescence level was higher than that of hermaphrodite cyathia at the third level but, when males and hermaphrodites at the same level were compared, their pollen production was similar. Male and hermaphrodite cyathia were similar in size, irrespective of the inflorescence level, although the exclusively hermaphrodite cyathia of the last level were smaller. Both cyathium types produced similar amounts of sugar. However, male cyathia produced nectar during their whole lifespans, whereas hermaphrodites produced it exclusively during their male phase. Moreover, the nectary activity of male cyathia started earlier in the day than that of hermaphrodites.
An apparent floral dimorphism exists in the primary sexual characteristics of Euphorbia nicaeensis because differences in pollen production between cyathium types are due to theirs positions. Similarly, differences affecting most secondary sexual characteristics are only apparent between the two cyathium types. However, E. nicaeensis shows a true but slight floral dimorphism in some of the secondary sex characters related to nectar secretion. The lack of nectar production by the female phase of the hermaphrodite cyathia of E. nicaeensis indicates that this is a deceit-pollinated species.
PMCID: PMC2710178  PMID: 18250109
Andromonoecy; cyathia longevity; deceit pollination; Euphorbia nicaeensis; Euphorbiaceae; inflorescence architecture; nectar secretion; positional effects; protogyny; viable pollen production; sexual dimorphism
5.  The Endophytic System of Mediterranean Cytinus (Cytinaceae) Developing on Five Host Cistaceae Species 
Annals of Botany  2007;100(6):1209-1217.
Background and Aims
One of the most extreme manifestations of parasitism is found in the genus Cytinus, a holoparasite whose vegetative body is reduced to an endophytic system living within its host root. There are two species of Cytinus in the Mediterranean, C. hypocistis and C. ruber, which parasitize various genera of Cistaceae, one of the most characteristic families of the Mediterranean scrublands. The aim of this work is to describe the endophytic systems of C. hypocistis and C. ruber, and their tissue relationships with their host.
Roots from five different hosts infected with C. hypocistis and C. ruber were harvested, and examined by anatomical techniques under light microscopy to elucidate the characteristics of the endophytic system of Cytinus, and to determine if differences in endophytic systems occur between the two species and in response to different hosts.
Key Results
The endophyte structure is similar in both Cytinus species irrespective of the host species. In the initial stages of the endophyte, rows of parenchymal cells spread through the host pericyclic derivatives and phloem, and begin to generate small nodules in the outermost region of the host xylem. Later the nodules anastomose, and bands of parasitic tissue are formed. The host cambium continues to develop xylem tissue, and consequently the endophyte becomes enclosed within the xylem. The bands of parasitic tissue fuse to form a continuous sheath. This mature endophyte has well-developed vascular system with xylem and phloem, and forms sinkers with transfer cells that grow through the host xylem.
The endophytic system of Cytinus develops in all host root tissues and reaches its most mature stages in the host xylem. It is more complex than previously reported, showing parenchyma, xylem and phloem tissues. This is the first report of well-developed phloem in a holoparasitic endophytic species.
PMCID: PMC2759266  PMID: 17804607
Cistaceae; Cytinaceae; Cytinus hypocistis; Cytinus ruber; endophyte; Mediterranean region; parasitic plant; sieve elements; sinker; transfer cell

Results 1-5 (5)