Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)
Year of Publication
Document Types
1.  Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report 
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.
PMCID: PMC3983890  PMID: 24160862
idiopathic pulmonary fibrosis; alveolar epithelial cells; extracellular matrix; interstitial lung disease; inflammation
2.  Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation 
Rationale: Extracellular matrix (ECM) is a dynamic tissue that contributes to organ integrity and function, and its regulation of cell phenotype is a major aspect of cell biology. However, standard in vitro culture approaches are of unclear physiologic relevance because they do not mimic the compositional, architectural, or distensible nature of a living organ. In the lung, fibroblasts exist in ECM-rich interstitial spaces and are key effectors of lung fibrogenesis.
Objectives: To better address how ECM influences fibroblast phenotype in a disease-specific manner, we developed a culture system using acellular human normal and fibrotic lungs.
Methods: Decellularization was achieved using treatment with detergents, salts, and DNase. The resultant matrices can be sectioned as uniform slices within which cells were cultured.
Measurements and Main Results: We report that the decellularization process effectively removes cellular and nuclear material while retaining native dimensionality and stiffness of lung tissue. We demonstrate that lung fibroblasts reseeded into acellular lung matrices can be subsequently assayed using conventional protocols; in this manner we show that fibrotic matrices clearly promote transforming growth factor-β–independent myofibroblast differentiation compared with normal matrices. Furthermore, comprehensive analysis of acellular matrix ECM details significant compositional differences between normal and fibrotic lungs, paving the way for further study of novel hypotheses.
Conclusions: This methodology is expected to allow investigation of important ECM-based hypotheses in human tissues and permits future scientific exploration in an organ- and disease-specific manner.
PMCID: PMC3530219  PMID: 22936357
extracellular matrix; lung fibrosis; fibroblast
3.  Statins and Pulmonary Fibrosis 
Rationale: The role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) in the development or progression of interstitial lung disease (ILD) is controversial.
Objectives: To evaluate the association between statin use and ILD.
Methods: We used regression analyses to evaluate the association between statin use and interstitial lung abnormalities (ILA) in a large cohort of smokers from COPDGene. Next, we evaluated the effect of statin pretreatment on bleomycin-induced fibrosis in mice and explored the mechanism behind these observations in vitro.
Measurements and Main Results: In COPDGene, 38% of subjects with ILA were taking statins compared with 27% of subjects without ILA. Statin use was positively associated in ILA (odds ratio, 1.60; 95% confidence interval, 1.03–2.50; P = 0.04) after adjustment for covariates including a history of high cholesterol or coronary artery disease. This association was modified by the hydrophilicity of statin and the age of the subject. Next, we demonstrate that statin administration aggravates lung injury and fibrosis in bleomycin-treated mice. Statin pretreatment enhances caspase-1–mediated immune responses in vivo and in vitro; the latter responses were abolished in bone marrow–derived macrophages isolated from Nlrp3−/− and Casp1−/− mice. Finally, we provide further insights by demonstrating that statins enhance NLRP3-inflammasome activation by increasing mitochondrial reactive oxygen species generation in macrophages.
Conclusions: Statin use is associated with ILA among smokers in the COPDGene study and enhances bleomycin-induced lung inflammation and fibrosis in the mouse through a mechanism involving enhanced NLRP3-inflammasome activation. Our findings suggest that statins may influence the susceptibility to, or progression of, ILD.
Clinical trial registered with (NCT 00608764).
PMCID: PMC3297101  PMID: 22246178
statins; interstitial lung disease; pulmonary fibrosis; inflammasome; mitochondrial reactive oxygen species
4.  Mesenchymal Stromal Cells in Bronchoalveolar Lavage as Predictors of Bronchiolitis Obliterans Syndrome 
Rationale: Bronchoalveolar lavage fluid (BAL) from human lung allografts demonstrates the presence of a multipotent mesenchymal stromal cell population. However, the clinical relevance of this novel cellular component of BAL and its association with bronchiolitis obliterans syndrome (BOS), a disease marked by progressive airflow limitation secondary to fibrotic obliteration of the small airways, remains to be determined.
Objectives: In this study we investigate the association of number of mesenchymal stromal cells in BAL with development of BOS in human lung transplant recipients.
Methods: Mesenchymal colony-forming units (CFUs) were quantitated in a cohort of 405 BAL samples obtained from 162 lung transplant recipients. Poisson generalized estimating equations were used to determine the predictors of BAL mesenchymal CFU count.
Measurements and Main Results: Higher CFU counts were noted early post-transplantation; time from transplant to BAL of greater than 3 months predicted 0.4-fold lower CFU counts (P = 0.0001). BOS diagnosis less than or equal to 365 days before BAL was associated with a 2.11-fold higher CFU count (P = 0.02). There were 2.62- and 2.70-fold higher CFU counts noted in the presence of histologic diagnosis of bronchiolitis obliterans (P = 0.05) and organizing pneumonia (0.0003), respectively. In BAL samples obtained from BOS-free patients greater than 6 months post-transplantation (n = 173), higher mesenchymal CFU counts (≥10) significantly predicted BOS onset in both univariate (hazard ratio, 5.61; 95% CI, 3.03–10.38; P < 0.0001) and multivariate (hazard ratio, 5.02; 95% CI, 2.40–10.51; P < 0.0001) Cox regression analysis.
Conclusions: Measurement of mesenchymal CFUs in the BAL provides predictive information regarding future BOS onset.
PMCID: PMC3086744  PMID: 21169468
bronchiolitis obliterans syndrome; acute rejection; bronchoalveolar lavage
5.  Negative regulation of myofibroblast differentiation by phosphatase and tensin homologue deleted on chromosome ten 
Rationale: Myofibroblasts are primary effector cells in idiopathic pulmonary fibrosis. Defining mechanisms of myofibroblast differentiation may be critical to the development of novel therapeutic agents. Objective: To show that myofibroblast differentiation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activity in vivo and to identify a potential mechanism by which this occurs. Methods: We utilized tissue sections of surgical lung biopsies from patients with idiopathic pulmonary fibrosis to localize expression of PTEN and α-SMA. We utilized cell culture of pten-/- and wild-type fibroblasts as well as adenoviral strategies and pharmacologic inhibitors to determine the mechanism by which PTEN inhibits α-SMA, fibroblast proliferation, and collagen production. Results: In human lung specimens of idiopathic pulmonary fibrosis, myofibroblasts within fibroblastic foci demonstrate diminished PTEN expression. Further, inhibition of PTEN in mice worsened bleomycin-induced fibrosis. In pten-/- fibroblasts, and in normal fibroblasts in which PTEN is inhibited, α-SMA, proliferation, and collagen production is upregulated. Addition of transforming growth factor-β to wild-type cells, but not pten-/- cells, results in increased α-SMA expression in a time-dependent fashion. In pten-/- cells, reconstitution of PTEN decreases α-SMA expression, proliferation, and collagen production, whereas overexpression of PTEN in wild-type cells inhibits transforming growth factor-β-induced myofibroblast differentiation. Both the protein and lipid phosphatase actions of PTEN are capable of modulating the myofibroblast phenotype. Conclusions: The results indicate that in idiopathic pulmonary fibrosis, myofibroblasts have diminished PTEN expression. Inhibition of PTEN in vivo promotes fibrosis, and PTEN inhibits myofibroblast differentiation in vitro.
PMCID: PMC1434700  PMID: 16179636
myofibroblast; fibrosis; PTEN; phosphatase; smooth muscle actin
6.  Negative Regulation of Myofibroblast Differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome 10) 
Rationale: Myofibroblasts are primary effector cells in idiopathic pulmonary fibrosis (IPF). Defining mechanisms of myofibroblast differentiation may be critical to the development of novel therapeutic agents.
Objective: To show that myofibroblast differentiation is regulated by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) activity in vivo, and to identify a potential mechanism by which this occurs.
Methods: We used tissue sections of surgical lung biopsies from patients with IPF to localize expression of PTEN and α–smooth muscle actin (α-SMA). We used cell culture of pten−/− and wild-type fibroblasts, as well as adenoviral strategies and pharmacologic inhibitors, to determine the mechanism by which PTEN inhibits α-SMA, fibroblast proliferation, and collagen production.
Results: In human lung specimens of IPF, myofibroblasts within fibroblastic foci demonstrated diminished PTEN expression. Furthermore, inhibition of PTEN in mice worsened bleomycin-induced fibrosis. In pten−/− fibroblasts, and in normal fibroblasts in which PTEN was inhibited, α-SMA, proliferation, and collagen production was upregulated. Addition of transforming growth factor-β to wild-type cells, but not pten−/− cells, resulted in increased α-SMA expression in a time-dependent fashion. In pten−/− cells, reconstitution of PTEN decreased α-SMA expression, proliferation, and collagen production, whereas overexpression of PTEN in wild-type cells inhibited transforming growth factor-β–induced myofibroblast differentiation. It was observed that both the protein and lipid phosphatase actions of PTEN were capable of modulating the myofibroblast phenotype.
Conclusions: The results indicate that in IPF, myofibroblasts have diminished PTEN expression. Inhibition of PTEN in vivo promotes fibrosis, and PTEN inhibits myofibroblast differentiation in vitro.
PMCID: PMC1434700  PMID: 16179636
fibrosis; myofibroblast; phosphatase; PTEN; smooth muscle actin
7.  The National Emphysema Treatment Trial (NETT) 
Substantial information regarding the role of lung volume reduction surgery (LVRS) in severe emphysema emanates from the National Emphysema Treatment Trial (NETT). The NETT was not a crossover trial and therefore was able to examine the effects of optimal medical management and LVRS on short- and long-term survival, as well as lung function, exercise performance, and quality of life. The NETT generated multiple insights into the preoperative, perioperative, and postoperative management of patients undergoing thoracotomy; described pain control techniques that were safe and effective; and emphasized the need to address nonpulmonary issues to optimize surgical outcomes. After the NETT, newer investigation has focused on bronchoscopic endobronchial interventions and other techniques less invasive than LVRS to achieve lung reduction. In this review, we summarize what we currently know about the role of LVRS in the treatment of severe emphysema as a result of insights gained from the NETT and provide a brief review of the newer techniques of lung volume reduction.
PMCID: PMC3208657  PMID: 21719757
emphysema; COPD; lung volume reduction surgery
8.  Increased Cytokine Response of Rhinovirus-infected Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease 
Rationale: Airway inflammation is a central feature of chronic obstructive pulmonary disease (COPD). COPD exacerbations are often triggered by rhinovirus (RV) infection.
Objectives: We hypothesized that airway epithelial cells from patients with COPD maintain a proinflammatory phenotype compared with control subjects, leading to greater RV responses.
Methods: Cells were isolated from tracheobronchial tissues of 12 patients with COPD and 10 transplant donors. Eight patients with COPD had severe emphysema, three had mild to moderate emphysema, and one had no emphysema. All had moderate to severe airflow obstruction, and six met criteria for chronic bronchitis or had at least one exacerbation the previous year. Cells were grown at air–liquid interface and infected with RV serotype 39. Cytokine and IFN expression was measured by ELISA. Selected genes involved in inflammation, oxidative stress, and proteolysis were assessed by focused gene array and real-time polymerase chain reaction.
Measurements and Main Results: Compared with control subjects, cells from patients with COPD demonstrated increased mRNA expression of genes involved in oxidative stress and the response to viral infection, including NOX1, DUOXA2, MMP12, ICAM1, DDX58/RIG-I, STAT1, and STAT2. COPD cells showed elevated baseline and RV-stimulated protein levels of IL-6, IL-8/CXCL8, and growth-related oncogene-α/CXCL1. COPD cells demonstrated increased viral titer and copy number after RV infection, despite increased IL-29/IFN-λ1, IL-28A/IFN-λ2, and IFN-inducible protein-10/CXCL10 protein levels. Finally, RV-infected COPD cultures showed increased mRNA expression of IL28A/IFNλ2, IL29/IFNλ1, IFIH1/MDA5, DDX58/RIG-I, DUOX1, DUOX2, IRF7, STAT1, and STAT2.
Conclusions: Airway epithelial cells from patients with COPD show higher baseline levels of cytokine expression and increased susceptibility to RV infection, despite an increased IFN response.
PMCID: PMC2921598  PMID: 20395558
C-X-C chemokine; IL-6; IFN; NOX1; retinoic acid inducible gene–I
9.  Clinical Predictors of a Diagnosis of Idiopathic Pulmonary Fibrosis 
Rationale: Idiopathic pulmonary fibrosis (IPF) and other idiopathic interstitial pneumonias (IIPs) have similar clinical and radiographic features, but their histopathology, response to therapy, and natural history differ. A surgical lung biopsy is often required to distinguish between these entities.
Objectives: We sought to determine if clinical variables could predict a histopathologic diagnosis of IPF in patients without honeycomb change on high-resolution computed tomography (HRCT).
Methods: Data from 97 patients with biopsy-proven IPF and 38 patients with other IIPs were examined. Logistic regression models were built to identify the clinical variables that predict histopathologic diagnosis of IPF.
Measurements and Main Results: Increasing age and average total HRCT interstitial score on HRCT scan of the chest may predict a biopsy confirmation of IPF. Sex, pulmonary function, presence of desaturation, or distance walked during a 6-minute walk test did not help discriminate pulmonary fibrosis from other IIPs.
Conclusions: Clinical data may be used to predict a diagnosis of IPF over other IIPs. Validation of these data with a prospective study is needed.
PMCID: PMC2854332  PMID: 20056903
idiopathic pulmonary fibrosis; idiopathic interstitial pneumonia; diagnosis; computed tomography of the chest
10.  Physiological and Computed Tomographic Predictors of Outcome from Lung Volume Reduction Surgery 
Rationale: Previous investigations have identified several potential predictors of outcomes from lung volume reduction surgery (LVRS). A concern regarding these studies has been their small sample size, which may limit generalizability. We therefore sought to examine radiographic and physiologic predictors of surgical outcomes in a large, multicenter clinical investigation, the National Emphysema Treatment Trial.
Objectives: To identify objective radiographic and physiological indices of lung disease that have prognostic value in subjects with chronic obstructive pulmonary disease being evaluated for LVRS.
Methods: A subset of the subjects undergoing LVRS in the National Emphysema Treatment Trial underwent preoperative high-resolution computed tomographic (CT) scanning of the chest and measures of static lung recoil at total lung capacity (SRtlc) and inspiratory resistance (Ri). The relationship between CT measures of emphysema, the ratio of upper to lower zone emphysema, CT measures of airway disease, SRtlc, Ri, the ratio of residual volume to total lung capacity (RV/TLC), and both 6-month postoperative changes in FEV1 and maximal exercise capacity were assessed.
Measurements and Main Results: Physiological measures of lung elastic recoil and inspiratory resistance were not correlated with improvement in either the FEV1 (R = −0.03, P = 0.78 and R = –0.17, P = 0.16, respectively) or maximal exercise capacity (R = –0.02, P = 0.83 and R = 0.08, P = 0.53, respectively). The RV/TLC ratio and CT measures of emphysema and its upper to lower zone ratio were only weakly predictive of postoperative changes in both the FEV1 (R = 0.11, P = 0.01; R = 0.2, P < 0.0001; and R = 0.23, P < 0.0001, respectively) and maximal exercise capacity (R = 0.17, P = 0.0001; R = 0.15, P = 0.002; and R = 0.15, P = 0.002, respectively). CT assessments of airway disease were not predictive of change in FEV1 or exercise capacity in this cohort.
Conclusions: The RV/TLC ratio and CT measures of emphysema and its distribution are weak but statistically significant predictors of outcome after LVRS.
PMCID: PMC2830400  PMID: 19965810
11.  Pulmonary Hypertension and Computed Tomography Measurement of Small Pulmonary Vessels in Severe Emphysema 
Rationale: Vascular alteration of small pulmonary vessels is one of the characteristic features of pulmonary hypertension in chronic obstructive pulmonary disease. The in vivo relationship between pulmonary hypertension and morphological alteration of the small pulmonary vessels has not been assessed in patients with severe emphysema.
Objectives: We evaluated the correlation of total cross-sectional area of small pulmonary vessels (CSA) assessed on computed tomography (CT) scans with the degree of pulmonary hypertension estimated by right heart catheterization.
Methods: In 79 patients with severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), we measured CSA less than 5 mm2 (CSA<5) and 5 to 10 mm2 (CSA5−10), and calculated the percentage of total CSA for the lung area (%CSA<5 and %CSA5–10, respectively). The correlations of %CSA<5 and %CSA5–10 with pulmonary arterial mean pressure (\documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}\overline{Ppa}\end{equation*}\end{document}) obtained by right heart catheterization were evaluated. Multiple linear regression analysis using \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}\overline{Ppa}\end{equation*}\end{document} as the dependent outcome was also performed.
Measurements and Main Results: The %CSA<5 had a significant negative correlation with \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}\overline{Ppa}\end{equation*}\end{document} (r = −0.512, P < 0.0001), whereas the correlation between %CSA5–10 and \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}\overline{Ppa}\end{equation*}\end{document} did not reach statistical significance (r = −0.196, P = 0.083). Multiple linear regression analysis showed that %CSA<5 and diffusing capacity of carbon monoxide (DlCO) % predicted were independent predictors of \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}\overline{Ppa}\end{equation*}\end{document} (r2 = 0.541): %CSA <5 (P < 0.0001), and DlCO % predicted (P = 0.022).
Conclusions: The %CSA<5 measured on CT images is significantly correlated to \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}\overline{Ppa}\end{equation*}\end{document} in severe emphysema and can estimate the degree of pulmonary hypertension.
PMCID: PMC2817812  PMID: 19875683
chronic obstructive pulmonary disease; emphysema; pulmonary hypertension; CT
12.  Lung Dendritic Cell Expression of Maturation Molecules Increases with Worsening Chronic Obstructive Pulmonary Disease 
Rationale: Dendritic cells (DCs) have not been well studied in chronic obstructive pulmonary disease (COPD), yet their integral role in activating and differentiating T cells makes them potential participants in COPD pathogenesis.
Objectives: To determine the expression of maturation molecules by individual DC subsets in relationship to COPD stage and to expression of the acute activation marker CD69 by lung CD4+ T cells.
Methods: We nonenzymatically released lung leukocytes from human surgical specimens (n = 42) and used flow cytometry to identify three DC subsets (mDC1, mDC2, and pDC) and to measure their expression of three costimulatory molecules (CD40, CD80 and CD86) and of CD83, the definitive marker of DC maturation. Spearman nonparametric correlation analysis was used to identify significant correlations between expression of DC maturation molecules and COPD severity.
Measurements and Main Results: Expression of CD40 by mDC1 and mDC2 and of CD86 by mDC2 was high regardless of GOLD stage, but CD80 and CD83 on these two DC subsets increased with disease progression. pDC also showed significant increases in expression of CD40 and CD80. Expression of all but one of the DC molecules that increased with COPD severity also correlated with CD69 expression on lung CD4+ T cells from the same patients, with the exception of CD83 on mDC2.
Conclusions: This cross-sectional study implies that COPD progression is associated with significant increases in costimulatory molecule expression by multiple lung DC subsets. Interactions with lung DCs may contribute to the immunophenotype of CD4+ T cells in advanced COPD.
Clinical trial registered with (NCT00281229).
PMCID: PMC2796731  PMID: 19729666
human; flow cytometry; B70 costimulatory molecules; CD69 antigen; CD4+; T lymphocytes
13.  Superior Immune Response to Protein-Conjugate versus Free Pneumococcal Polysaccharide Vaccine in Chronic Obstructive Pulmonary Disease 
Rationale: Debate exists about the immunogenicity and protective efficacy of antibodies produced by the 23-valent pneumococcal polysaccharide vaccine (PPSV23) in chronic obstructive pulmonary disease (COPD). The 7-valent diphtheria-conjugated pneumococcal polysaccharide vaccine (PCV7) induces a more robust immune response than PPSV23 in healthy elderly adults.
Objectives: We hypothesized that serotype-specific IgG antibody concentration and functional antibody activity would be superior after PCV7 vaccination compared with PPSV23 in moderate to severe COPD. We also posited that older age and prior PPSV23 vaccination would be associated with reduced vaccine responsiveness.
Methods: One hundred twenty patients with COPD were randomized to PPSV23 (63 subjects) or PCV7 (57 subjects). IgG concentrations were determined by ELISA; functional antibody activity was assayed with a standardized opsonophagocytosis assay and reported as an opsonization killing index (OPK). Increases in serotype-specific IgG and OPK at 1 month post vaccination were compared within and between vaccine groups.
Measurements and Main Results: Both vaccines were well tolerated. Within each study group, postvaccination IgG and OPK were higher than baseline (P < 0.01) for all serotypes. Adjusted for baseline levels, postvaccination IgG was higher in the PCV7 group than the PPSV23 group for all seven serotypes, reaching statistical significance for five (P < 0.05). PCV7 resulted in a higher OPK for six of seven serotypes (statistically greater for four) compared with PPSV23. In multivariate analyses, younger age, vaccine naivety, and receipt of PCV7 were associated with increased OPK responses.
Conclusions: PCV7 induces a superior immune response at 1 month post vaccination compared with PPSV23 in COPD. Older age and prior PPSV23 reduce vaccine responsiveness.
Clinical trial registered with (NCT00457977).
PMCID: PMC2742743  PMID: 19556517
pneumococcal vaccines; vaccination, COPD; immune responses; immunization
14.  Integrating Health Status and Survival Data 
Rationale: In studies that address health-related quality of life (QoL) and survival, subjects who die are usually censored from QoL assessments. This practice tends to inflate the apparent benefits of interventions with a high risk of mortality. Assessing a composite QoL-death outcome is a potential solution to this problem.
Objectives: To determine the effect of lung volume reduction surgery (LVRS) on a composite endpoint consisting of the occurrence of death or a clinically meaningful decline in QoL defined as an increase of at least eight points in the St. George's Respiratory Questionnaire total score from the National Emphysema Treatment Trial.
Methods: In patients with chronic obstructive pulmonary disease and emphysema randomized to receive medical treatment (n = 610) or LVRS (n = 608), we analyzed the survival to the composite endpoint, the hazard functions and constructed prediction models of the slope of QoL decline.
Measurements and Main Results: The time to the composite endpoint was longer in the LVRS group (2 years) than the medical treatment group (1 year) (P < 0.0001). It was even longer in the subsets of patients undergoing LVRS without a high risk for perioperative death and with upper-lobe-predominant emphysema. The hazard for the composite event significantly favored the LVRS group, although it was most significant in patients with predominantly upper-lobe emphysema. The beneficial impact of LVRS on QoL decline was most significant during the 2 years after LVRS.
Conclusions: LVRS has a significant effect on the composite QoL-survival endpoint tested, indicating its meaningful palliative role, particularly in patients with upper-lobe–predominant emphysema.
PMCID: PMC2724716  PMID: 19483114
chronic obstructive pulmonary disease; outcome assessment; palliative care; quality of life; survival; emphysema
15.  The Prognostic Value of Cardiopulmonary Exercise Testing in Idiopathic Pulmonary Fibrosis 
Rationale: Idiopathic pulmonary fibrosis (IPF) is characterized by progressive dyspnea, impaired gas exchange, and ultimate mortality.
Objectives: To test the hypothesis that maximal oxygen uptake during cardiopulmonary exercise testing at baseline and with short-term longitudinal measures would predict mortality in patients with idiopathic pulmonary fibrosis.
Methods: Data from 117 patients with IPF and longitudinal cardiopulmonary exercise tests were examined retrospectively. Survival was calculated from the date of the first cardiopulmonary exercise test.
Measurements and Main Results: Patients with baseline maximal oxygen uptake less than 8.3 ml/kg/min had an increased risk of death (n = 8; hazard ratio, 3.24; 95% confidence interval, 1.10–9.56; P = 0.03) after adjusting for age, gender, smoking status, baseline forced vital capacity, and baseline diffusion capacity for carbon monoxide. We were unable to define a unit change in maximal oxygen uptake that predicted survival in our cohort.
Conclusions: We conclude that a threshold maximal oxygen uptake of 8.3 ml/kg/min during cardiopulmonary exercise testing at baseline adds prognostic information for patients with IPF.
PMCID: PMC2648909  PMID: 19074597
idiopathic pulmonary fibrosis; exercise test; mortality
16.  Longitudinal Change in the BODE Index Predicts Mortality in Severe Emphysema 
Rationale: The predictive value of longitudinal change in BODE (Body mass index, airflow Obstruction, Dyspnea, and Exercise capacity) index has received limited attention. We hypothesized that decrease in a modified BODE (mBODE) would predict survival in National Emphysema Treatment Trial (NETT) patients.
Objectives: To determine how the mBODE score changes in patients with lung volume reduction surgery versus medical therapy and correlations with survival.
Methods: Clinical data were recorded using standardized instruments. The mBODE was calculated and patient-specific mBODE trajectories during 6, 12, and 24 months of follow-up were estimated using separate regressions for each patient. Patients were classified as having decreasing, stable, increasing, or missing mBODE based on their absolute change from baseline. The predictive ability of mBODE change on survival was assessed using multivariate Cox regression models. The index of concordance was used to directly compare the predictive ability of mBODE and its separate components.
Measurements and Main Results: The entire cohort (610 treated medically and 608 treated surgically) was characterized by severe airflow obstruction, moderate breathlessness, and increased mBODE at baseline. A wide distribution of change in mBODE was seen at follow-up. An increase in mBODE of more than 1 point was associated with increased mortality in surgically and medically treated patients. Surgically treated patients were less likely to experience death or an increase greater than 1 in mBODE. Indices of concordance showed that mBODE change predicted survival better than its separate components.
Conclusions: The mBODE demonstrates short- and intermediate-term responsiveness to intervention in severe chronic obstructive pulmonary disease. Increase in mBODE of more than 1 point from baseline to 6, 12, and 24 months of follow-up was predictive of subsequent mortality. Change in mBODE may prove a good surrogate measure of survival in therapeutic trials in severe chronic obstructive pulmonary disease.
Clinical trial registered with (NCT 00000606).
PMCID: PMC2542428  PMID: 18535255
chronic obstructive pulmonary disease; survival; multidimensional index
17.  An Essential Role for Fibronectin Extra Type III Domain A in Pulmonary Fibrosis 
Rationale: Tissue fibrosis is considered a dysregulated wound-healing response. Fibronectin containing extra type III domain A (EDA) is implicated in the regulation of wound healing. EDA-containing fibronectin is deposited during wound repair, and its presence precedes that of collagen.
Objectives: To investigate the role of EDA-containing fibronectin in lung fibrogenesis.
Methods: Primary lung fibroblasts from patients with idiopathic pulmonary fibrosis or from patients undergoing resection for lung cancer were assessed for EDA-containing fibronectin and α-smooth muscle actin (α-SMA) expression. Mice lacking the EDA domain of fibronectin and their wild-type littermates were challenged with the bleomycin model of lung fibrosis. Primary lung fibroblasts from these mice were assayed in vitro to determine the contribution of EDA-containing fibronectin to fibroblast phenotypes.
Measurements and Main Results: Idiopathic pulmonary fibrosis lung fibroblasts produced markedly more EDA-containing fibronectin and α-SMA than control fibroblasts. EDA-null mice failed to develop significant fibrosis 21 days after bleomycin challenge, whereas wild-type controls developed the expected increase in total lung collagen. Histologic analysis of EDA-null lungs after bleomycin showed less collagen and fewer α-SMA–expressing myofibroblasts compared with that observed in wild-type mice. Failure to develop lung fibrosis in EDA-null mice correlated with diminished activation of latent transforming growth factor (TGF)-β and decreased lung fibroblast responsiveness to active TGF-β in vitro.
Conclusions: The data show that EDA-containing fibronectin is essential for the fibrotic resolution of lung injury through TGF-β activation and responsiveness, and suggest that EDA-containing fibronectin plays a critical role in tissue fibrogenesis.
PMCID: PMC2267338  PMID: 18096707
fibrosis; fibronectin; TGF-β; myofibroblast
18.  Variable Prostaglandin E2 Resistance in Fibroblasts from Patients with Usual Interstitial Pneumonia 
Rationale: Prostaglandin (PG) E2, a cyclooxygenase-derived lipid mediator, is a potent down-regulator of fibroblast activation in normal lung fibroblasts. Although fibroblasts from patients with idiopathic pulmonary fibrosis are known to exhibit a defect in PGE2 synthesis, there is little information about their responsiveness to this lipid mediator.
Objectives: To compare responses to PGE2 in normal, usual interstitial pneumonia (UIP), and other diffuse parenchymal lung disease (DPLD) fibroblasts.
Methods: Fibroblasts were grown in vitro from well characterized control (n = 7), UIP (n = 17), or other DPLD (n = 13) lung tissue. The effects of PGE2 on fibroblast proliferation and collagen expression were determined.
Measurements and Main Results: Only 3 of 12 UIP fibroblast lines exhibited PGE2-mediated inhibition of both collagen synthesis and cell proliferation, as opposed to 6 of 6 nonfibrotic control cell lines. The degree of PGE2 resistance in DPLD fibroblasts was quite variable, with UIP cells exhibiting the greatest degree of resistance to PGE2, whereas other DPLD fibroblasts manifested a degree of resistance intermediate to control and UIP. The resistance to suppression of collagen expression correlated with worse lung function. Molecular mechanisms for resistance included altered E prostanoid receptor profiles and diminished expression of the downstream kinase, protein kinase A.
Conclusions: The recognition that UIP fibroblasts manifest variable refractoriness to PGE2 suppression sheds new light on the activation phenotype of these cells and on the pathogenesis of fibrotic lung disease.
PMCID: PMC2176116  PMID: 17916807
collagen; cAMP; idiopathic pulmonary fibrosis; nonspecific interstitial pneumonia; proliferation
19.  Gender and Chronic Obstructive Pulmonary Disease 
The prevalence of chronic obstructive pulmonary disease (COPD) in women is increasing, as is hospitalization for COPD. The number of women dying of COPD in the United States now surpasses men. Despite this, research suggests that physicians are still more likely to correctly diagnose men with COPD than women. Increased tobacco use in women likely explains some of the increase in the prevalence of COPD in women, but data suggest that women may actually be at greater risk of smoking-induced lung function impairment, more severe dyspnea, and poorer health status for the same level of tobacco exposure. The degree to which these observations represent biologic, physiologic, or sociologic differences is not known. Nonsmokers with COPD are also more likely to be female. In addition, new evidence is emerging that men and women may be phenotypically different in their response to tobacco smoke, with men being more prone to an emphysematous phenotype and women an airway predominant phenotype. Inasmuch as COPD is a disease of inflammation, it is also possible that sexual dimorphism of the human immune response may also be responsible for gender differences in the disease. More data are still needed on what the implications of these findings are on therapy. In this clinical commentary, we present current knowledge regarding how gender influences the epidemiology, diagnosis, and presentation of COPD in addition to physiologic and psychologic impairments and we attempt to offer insight into why these differences might exist and how this may influence therapeutic management.
PMCID: PMC2720110  PMID: 17673696
tobacco susceptibility; smoking; sex; obstructive lung disease
20.  Survival after Lung Volume Reduction in Chronic Obstructive Pulmonary Disease 
Rationale: COPD is associated with reduced life expectancy.
Objectives: To determine the association between small airway pathology and long-term survival after lung volume reduction in chronic obstructive pulmonary disease (COPD) and the effect of corticosteroids on this pathology.
Methods: Patients with severe (GOLD-3) and very severe (GOLD-4) COPD (n = 101) were studied after lung volume reduction surgery. Respiratory symptoms, quality of life, pulmonary function, exercise tolerance, chest radiology, and corticosteroid treatment status were assessed preoperatively. The severity of luminal occlusion, wall thickening, and the presence of small airways containing lymphoid follicles were determined in resected lung tissue. Kaplan-Meier survival analysis and Cox proportional hazards models were used to determine the relationship between survival and small airway pathology. The effect of corticosteroids on this pathology was assessed by comparing treated and untreated groups.
Measurements and Main Results: The quartile of subjects with the greatest luminal occlusion, adjusted for covariates, died earlier than subjects who had the least occlusion (hazard ratio, 3.28; 95% confidence interval, 1.55–6.92; P = 0.002). There was a trend toward a reduction in the number of airways containing lymphoid follicles (P = 0.051) in those receiving corticosteroids, with a statistically significant difference between the control and oral ± inhaled corticosteroid–treated groups (P = 0.019). However, corticosteroid treatment had no effect on airway wall thickening or luminal occlusion.
Conclusions: Occlusion of the small airways by inflammatory exudates containing mucus is associated with early death in patients with severe emphysema treated by lung volume reduction surgery. Corticosteroid treatment dampens the host immune response in these airways by reducing lymphoid follicles without changing wall thickening and luminal occlusion.
PMCID: PMC1976540  PMID: 17556723
premature death in COPD; airway remodeling; mucosal immune response; corticosteroids
21.  Sex Differences in Severe Pulmonary Emphysema 
Rationale: Limited data on sex differences in advanced COPD are available.
Objectives: To compare male and female emphysema patients with severe disease.
Methods: One thousand fifty-three patients (38.8% female) evaluated for lung volume reduction surgery as part of the National Emphysema Treatment Trial were analyzed.
Measurements and Main Results: Detailed clinical, physiological, and radiological assessment, including quantitation of emphysema severity and distribution from helical chest computed tomography, was completed. In a subgroup (n = 101), airway size and thickness was determined by histological analyses of resected tissue. Women were younger and exhibited a lower body mass index (BMI), shorter smoking history, less severe airflow obstruction, lower Dlco and arterial Po2, higher arterial Pco2, shorter six-minute walk distance, and lower maximal wattage during oxygen-supplemented cycle ergometry. For a given FEV1% predicted, age, number of pack-years, and proportion of emphysema, women experienced greater dyspnea, higher modified BODE, more depression, lower SF-36 mental component score, and lower quality of well-being. Overall emphysema was less severe in women, with the difference from men most evident in the outer peel of the lung. Females had thicker small airway walls relative to luminal perimeters.
Conclusions: In patients with severe COPD, women, relative to men, exhibit anatomically smaller airway lumens with disproportionately thicker airway walls, and emphysema that is less extensive and characterized by smaller hole size and less peripheral involvement.
PMCID: PMC1994221  PMID: 17431226
chronic obstructive pulmonary disease; emphysema; computed tomography; pulmonary function; gender
22.  Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial 
Rationale: Computed tomography (CT) scanning of the lung may reduce phenotypic heterogeneity in defining subjects with chronic obstructive pulmonary disease (COPD), and allow identification of genetic determinants of emphysema severity and distribution.
Objectives: We sought to identify genes associated with CT scan distribution of emphysema in individuals without α1-antitrypsin deficiency but with severe COPD.
Methods: We evaluated baseline CT densitometry phenotypes in 282 individuals with emphysema enrolled in the Genetics Ancillary Study of the National Emphysema Treatment Trial, and used regression models to identify genetic variants associated with emphysema distribution.
Measurements and Main Results: Emphysema distribution was assessed by two methods—assessment by radiologists and by computerized density mask quantitation, using a threshold of −950 Hounsfield units. A total of 77 polymorphisms in 20 candidate genes were analyzed for association with distribution of emphysema. GSTP1, EPHX1, and MMP1 polymorphisms were associated with the densitometric, apical-predominant distribution of emphysema (p value range = 0.001–0.050). When an apical-predominant phenotype was defined by the radiologist scoring method, GSTP1 and EPHX1 single-nucleotide polymorphisms were found to be significantly associated. In a case–control analysis of COPD susceptibility limited to cases with densitometric upper-lobe–predominant cases, the EPHX1 His139Arg single-nucleotide polymorphism was associated with COPD (p = 0.005).
Conclusions: Apical and basal emphysematous destruction appears to be influenced by different genes. Polymorphisms in the xenobiotic enzymes, GSTP1 and EPHX1, are associated with apical-predominant emphysema. Altered detoxification of cigarette smoke metabolites may contribute to emphysema distribution, and these findings may lead to further insight into genetic determinants of emphysema.
PMCID: PMC2049064  PMID: 17363767
COPD; genetics; association analysis; computed tomography; emphysema
23.  Course of FEV1 after Onset of Bronchiolitis Obliterans Syndrome in Lung Transplant Recipients 
Rationale: Bronchiolitis obliterans syndrome (BOS), defined by loss of lung function, develops in the majority of lung transplant recipients. However, there is a paucity of information on the subsequent course of lung function in these patients.
Objectives: To characterize the course of FEV1 over time after development of BOS and to determine the predictors that influence the rate of functional decline of FEV1.
Methods: FEV1% predicted (FEV1%pred) trajectories were studied in 111 lung transplant recipients with BOS by multivariate, linear, mixed-effects statistical models.
Measurements and Main Results: FEV1%pred varied over time after BOS onset, with the steepest decline typically seen in the first 6 months (12% decline; p < 0.0001). Bilateral lung transplant recipients had significantly higher FEV1%pred at BOS diagnosis (71 vs. 47%; p < 0.0001) and at 24 months after BOS onset (58 vs. 41%; p = 0.0001). Female gender and pretransplant diagnosis of idiopathic pulmonary fibrosis were associated with a steeper decline in FEV1%pred in the first 6 months after BOS diagnosis (p = 0.02 and 0.04, respectively). A fall in FEV1 greater than 20% in the 6 months preceding BOS (termed “rapid onset”) was associated with shorter time to BOS onset (p = 0.01), lower FEV1%pred at BOS onset (p < 0.0001), steeper decline in the first 6 months (p = 0.03), and lower FEV1%pred at 2 years after onset (p = 0.0002).
Conclusions: Rapid onset of BOS, female gender, pretransplant diagnosis of idiopathic pulmonary fibrosis, and single-lung transplantation are associated with worse pulmonary function after BOS onset.
PMCID: PMC1899272  PMID: 17347496
bronchiolitis obliterans syndrome; FEV1; pulmonary function; prognosis
24.  Idiopathic Interstitial Pneumonia 
Rationale: Treatment and prognoses of diffuse parenchymal lung diseases (DPLDs) varies by diagnosis. Obtaining a uniform diagnosis among observers is difficult.
Objectives: Evaluate diagnostic agreement between academic and community-based physicians for patients with DPLDs, and determine if an interactive approach between clinicians, radiologists, and pathologists improved diagnostic agreement in community and academic centers.
Methods: Retrospective review of 39 patients with DPLD. A total of 19 participants reviewed cases at 2 community locations and 1 academic location. Information from the history, physical examination, pulmonary function testing, high-resolution computed tomography, and surgical lung biopsy was collected. Data were presented in the same sequential fashion to three groups of physicians on separate days.
Measurements and Main Results: Each observer's diagnosis was coded into one of eight categories. A κ statistic allowing for multiple raters was used to assess agreement in diagnosis. Interactions between clinicians, radiologists, and pathologists improved interobserver agreement at both community and academic sites; however, final agreement was better within academic centers (κ = 0.55–0.71) than within community centers (κ = 0.32–0.44). Clinically significant disagreement was present between academic and community-based physicians (κ = 0.11–0.56). Community physicians were more likely to assign a final diagnosis of idiopathic pulmonary fibrosis compared with academic physicians.
Conclusions: Significant disagreement exists in the diagnosis of DPLD between physicians based in communities compared with those in academic centers. Wherever possible, patients should be referred to centers with expertise in diffuse parenchymal lung disorders to help clarify the diagnosis and provide suggestions regarding treatment options.
PMCID: PMC1899268  PMID: 17255566
academic; community; diagnosis; nonspecific interstitial pneumonia; usual interstitial pneumonia
25.  Acute Exacerbations of Idiopathic Pulmonary Fibrosis 
The natural history of idiopathic pulmonary fibrosis (IPF) has been characterized as a steady, predictable decline in lung function over time. Recent evidence suggests that some patients may experience a more precipitous course, with periods of relative stability followed by acute deteriorations in respiratory status. Many of these acute deteriorations are of unknown etiology and have been termed acute exacerbations of IPF. This perspective is the result of an international effort to summarize the current state of knowledge regarding acute exacerbations of IPF. Acute exacerbations of IPF are defined as acute, clinically significant deteriorations of unidentifiable cause in patients with underlying IPF. Proposed diagnostic criteria include subjective worsening over 30 days or less, new bilateral radiographic opacities, and the absence of infection or another identifiable etiology. The potential pathobiological roles of infection, disordered cell biology, coagulation, and genetics are discussed, and future research directions are proposed.
PMCID: PMC2094133  PMID: 17585107
acute exacerbation; pulmonary fibrosis; diagnosis; definition

Results 1-25 (29)