PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Early-Onset Chronic Obstructive Pulmonary Disease Is Associated with Female Sex, Maternal Factors, and African American Race in the COPDGene Study 
Rationale: The characterization of young adults who develop late-onset diseases may augment the detection of novel genes and promote new pathogenic insights.
Methods: We analyzed data from 2,500 individuals of African and European ancestry in the COPDGene Study. Subjects with severe, early-onset chronic obstructive pulmonary disease (COPD) (n = 70, age < 55 yr, FEV1 < 50% predicted) were compared with older subjects with COPD (n = 306, age > 64 yr, FEV1 < 50% predicted).
Measurements and Main Results: Subjects with severe, early-onset COPD were predominantly females (66%), P = 0.0004. Proportionally, early-onset COPD was seen in 42% (25 of 59) of African Americans versus 14% (45 of 317) of non-Hispanic whites, P < 0.0001. Other risk factors included current smoking (56 vs. 17%, P < 0.0001) and self-report of asthma (39 vs. 25%, P = 0.008). Maternal smoking (70 vs. 44%, P = 0.0001) and maternal COPD (23 vs. 12%, P = 0.03) were reported more commonly in subjects with early-onset COPD. Multivariable regression analysis found association with African American race, odds ratio (OR), 7.5 (95% confidence interval [CI], 2.3–24; P = 0.0007); maternal COPD, OR, 4.7 (95% CI, 1.3–17; P = 0.02); female sex, OR, 3.1 (95% CI, 1.1–8.7; P = 0.03); and each pack-year of smoking, OR, 0.98 (95% CI, 0.96–1.0; P = 0.03).
Conclusions: These observations support the hypothesis that severe, early-onset COPD is prevalent in females and is influenced by maternal factors. Future genetic studies should evaluate (1) gene-by-sex interactions to address sex-specific genetic contributions and (2) gene-by-race interactions.
doi:10.1164/rccm.201011-1928OC
PMCID: PMC3175544  PMID: 21562134
chronic obstructive pulmonary disease; female; African Americans
2.  Integrating Health Status and Survival Data 
Rationale: In studies that address health-related quality of life (QoL) and survival, subjects who die are usually censored from QoL assessments. This practice tends to inflate the apparent benefits of interventions with a high risk of mortality. Assessing a composite QoL-death outcome is a potential solution to this problem.
Objectives: To determine the effect of lung volume reduction surgery (LVRS) on a composite endpoint consisting of the occurrence of death or a clinically meaningful decline in QoL defined as an increase of at least eight points in the St. George's Respiratory Questionnaire total score from the National Emphysema Treatment Trial.
Methods: In patients with chronic obstructive pulmonary disease and emphysema randomized to receive medical treatment (n = 610) or LVRS (n = 608), we analyzed the survival to the composite endpoint, the hazard functions and constructed prediction models of the slope of QoL decline.
Measurements and Main Results: The time to the composite endpoint was longer in the LVRS group (2 years) than the medical treatment group (1 year) (P < 0.0001). It was even longer in the subsets of patients undergoing LVRS without a high risk for perioperative death and with upper-lobe-predominant emphysema. The hazard for the composite event significantly favored the LVRS group, although it was most significant in patients with predominantly upper-lobe emphysema. The beneficial impact of LVRS on QoL decline was most significant during the 2 years after LVRS.
Conclusions: LVRS has a significant effect on the composite QoL-survival endpoint tested, indicating its meaningful palliative role, particularly in patients with upper-lobe–predominant emphysema.
doi:10.1164/rccm.200809-1383OC
PMCID: PMC2724716  PMID: 19483114
chronic obstructive pulmonary disease; outcome assessment; palliative care; quality of life; survival; emphysema
3.  Longitudinal Change in the BODE Index Predicts Mortality in Severe Emphysema 
Rationale: The predictive value of longitudinal change in BODE (Body mass index, airflow Obstruction, Dyspnea, and Exercise capacity) index has received limited attention. We hypothesized that decrease in a modified BODE (mBODE) would predict survival in National Emphysema Treatment Trial (NETT) patients.
Objectives: To determine how the mBODE score changes in patients with lung volume reduction surgery versus medical therapy and correlations with survival.
Methods: Clinical data were recorded using standardized instruments. The mBODE was calculated and patient-specific mBODE trajectories during 6, 12, and 24 months of follow-up were estimated using separate regressions for each patient. Patients were classified as having decreasing, stable, increasing, or missing mBODE based on their absolute change from baseline. The predictive ability of mBODE change on survival was assessed using multivariate Cox regression models. The index of concordance was used to directly compare the predictive ability of mBODE and its separate components.
Measurements and Main Results: The entire cohort (610 treated medically and 608 treated surgically) was characterized by severe airflow obstruction, moderate breathlessness, and increased mBODE at baseline. A wide distribution of change in mBODE was seen at follow-up. An increase in mBODE of more than 1 point was associated with increased mortality in surgically and medically treated patients. Surgically treated patients were less likely to experience death or an increase greater than 1 in mBODE. Indices of concordance showed that mBODE change predicted survival better than its separate components.
Conclusions: The mBODE demonstrates short- and intermediate-term responsiveness to intervention in severe chronic obstructive pulmonary disease. Increase in mBODE of more than 1 point from baseline to 6, 12, and 24 months of follow-up was predictive of subsequent mortality. Change in mBODE may prove a good surrogate measure of survival in therapeutic trials in severe chronic obstructive pulmonary disease.
Clinical trial registered with www.clinicaltrials.gov (NCT 00000606).
doi:10.1164/rccm.200709-1383OC
PMCID: PMC2542428  PMID: 18535255
chronic obstructive pulmonary disease; survival; multidimensional index
4.  Sex Differences in Severe Pulmonary Emphysema 
Rationale: Limited data on sex differences in advanced COPD are available.
Objectives: To compare male and female emphysema patients with severe disease.
Methods: One thousand fifty-three patients (38.8% female) evaluated for lung volume reduction surgery as part of the National Emphysema Treatment Trial were analyzed.
Measurements and Main Results: Detailed clinical, physiological, and radiological assessment, including quantitation of emphysema severity and distribution from helical chest computed tomography, was completed. In a subgroup (n = 101), airway size and thickness was determined by histological analyses of resected tissue. Women were younger and exhibited a lower body mass index (BMI), shorter smoking history, less severe airflow obstruction, lower Dlco and arterial Po2, higher arterial Pco2, shorter six-minute walk distance, and lower maximal wattage during oxygen-supplemented cycle ergometry. For a given FEV1% predicted, age, number of pack-years, and proportion of emphysema, women experienced greater dyspnea, higher modified BODE, more depression, lower SF-36 mental component score, and lower quality of well-being. Overall emphysema was less severe in women, with the difference from men most evident in the outer peel of the lung. Females had thicker small airway walls relative to luminal perimeters.
Conclusions: In patients with severe COPD, women, relative to men, exhibit anatomically smaller airway lumens with disproportionately thicker airway walls, and emphysema that is less extensive and characterized by smaller hole size and less peripheral involvement.
doi:10.1164/rccm.200606-828OC
PMCID: PMC1994221  PMID: 17431226
chronic obstructive pulmonary disease; emphysema; computed tomography; pulmonary function; gender
5.  Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial 
Rationale: Computed tomography (CT) scanning of the lung may reduce phenotypic heterogeneity in defining subjects with chronic obstructive pulmonary disease (COPD), and allow identification of genetic determinants of emphysema severity and distribution.
Objectives: We sought to identify genes associated with CT scan distribution of emphysema in individuals without α1-antitrypsin deficiency but with severe COPD.
Methods: We evaluated baseline CT densitometry phenotypes in 282 individuals with emphysema enrolled in the Genetics Ancillary Study of the National Emphysema Treatment Trial, and used regression models to identify genetic variants associated with emphysema distribution.
Measurements and Main Results: Emphysema distribution was assessed by two methods—assessment by radiologists and by computerized density mask quantitation, using a threshold of −950 Hounsfield units. A total of 77 polymorphisms in 20 candidate genes were analyzed for association with distribution of emphysema. GSTP1, EPHX1, and MMP1 polymorphisms were associated with the densitometric, apical-predominant distribution of emphysema (p value range = 0.001–0.050). When an apical-predominant phenotype was defined by the radiologist scoring method, GSTP1 and EPHX1 single-nucleotide polymorphisms were found to be significantly associated. In a case–control analysis of COPD susceptibility limited to cases with densitometric upper-lobe–predominant cases, the EPHX1 His139Arg single-nucleotide polymorphism was associated with COPD (p = 0.005).
Conclusions: Apical and basal emphysematous destruction appears to be influenced by different genes. Polymorphisms in the xenobiotic enzymes, GSTP1 and EPHX1, are associated with apical-predominant emphysema. Altered detoxification of cigarette smoke metabolites may contribute to emphysema distribution, and these findings may lead to further insight into genetic determinants of emphysema.
doi:10.1164/rccm.200612-1797OC
PMCID: PMC2049064  PMID: 17363767
COPD; genetics; association analysis; computed tomography; emphysema
6.  Predictors of Mortality in Patients with Emphysema and Severe Airflow Obstruction 
Purpose: Limited data exist describing risk factors for mortality in patients having predominantly emphysema.
Subjects and Methods: A total of 609 patients with severe emphysema (ages 40–83 yr; 64.2% male) randomized to the medical therapy arm of the National Emphysema Treatment Trial formed the study group. Cox proportional hazards regression analysis was used to investigate risk factors for all-cause mortality. Risk factors examined included demographics, body mass index, physiologic data, quality of life, dyspnea, oxygen utilization, hemoglobin, smoking history, quantitative emphysema markers on computed tomography, and a modification of a recently described multifunctional index (modified BODE).
Results: Overall, high mortality was seen in this cohort (12.7 deaths per 100 person-years; 292 total deaths). In multivariate analyses, increasing age (p = 0.001), oxygen utilization (p = 0.04), lower total lung capacity % predicted (p = 0.05), higher residual volume % predicted (p = 0.04), lower maximal cardiopulmonary exercise testing workload (p = 0.002), greater proportion of emphysema in the lower lung zone versus the upper lung zone (p = 0.005), and lower upper-to-lower-lung perfusion ratio (p = 0.007), and modified BODE (p = 0.02) were predictive of mortality. FEV1 was a significant predictor of mortality in univariate analysis (p = 0.005), but not in multivariate analysis (p = 0.21).
Conclusion: Although patients with advanced emphysema experience significant mortality, subgroups based on age, oxygen utilization, physiologic measures, exercise capacity, and emphysema distribution identify those at increased risk of death.
doi:10.1164/rccm.200510-1677OC
PMCID: PMC2662972  PMID: 16543549
chronic obstructive pulmonary disease; computed tomography; mortality; prognosis; pulmonary function
7.  Genetic Association Analysis of Functional Impairment in Chronic Obstructive Pulmonary Disease 
Rationale: Patients with severe chronic obstructive pulmonary disease (COPD) may have varying levels of disability despite similar levels of lung function. This variation may reflect different COPD subtypes, which may have different genetic predispositions.
Objectives: To identify genetic associations for COPD-related phenotypes, including measures of exercise capacity, pulmonary function, and respiratory symptoms.
Methods: In 304 subjects from the National Emphysema Treatment Trial, we genotyped 80 markers in 22 positional and/or biologically plausible candidate genes. Regression models were used to test for association, using a test–replication approach to guard against false-positive results. For significant associations, effect estimates were recalculated using the entire cohort. Positive associations with dyspnea were confirmed in families from the Boston Early-Onset COPD Study.
Results: The test–replication approach identified four genes—microsomal epoxide hydrolase (EPHX1), latent transforming growth factor-β binding protein-4 (LTBP4), surfactant protein B (SFTPB), and transforming growth factor-β1 (TGFB1)—that were associated with COPD-related phenotypes. In all subjects, single-nucleotide polymorphisms (SNPs) in EPHX1 (p ⩽ 0.03) and in LTBP4 (p ⩽ 0.03) were associated with maximal output on cardiopulmonary exercise testing. Markers in LTBP4 (p ⩽ 0.05) and SFTPB (p = 0.005) were associated with 6-min walk test distance. SNPs in EPHX1 were associated with carbon monoxide diffusing capacity (p ⩽ 0.04). Three SNPs in TGFB1 were associated with dyspnea (p ⩽ 0.002), one of which replicated in the family study (p = 0.02).
Conclusions: Polymorphisms in several genes seem to be associated with COPD-related traits other than FEV1. These associations may identify genes in pathways important for COPD pathogenesis.
doi:10.1164/rccm.200509-1452OC
PMCID: PMC2662917  PMID: 16456143
dyspnea; emphysema; exercise tolerance; genetic association; pulmonary function tests

Results 1-7 (7)