Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)
Year of Publication
Document Types
1.  P2X7-Regulated Protection from Exacerbations and Loss of Control Is Independent of Asthma Maintenance Therapy 
Rationale: The function of the P2X7 nucleotide receptor protects against exacerbation in people with mild-intermittent asthma during viral illnesses, but the impact of disease severity and maintenance therapy has not been studied.
Objectives: To evaluate the association between P2X7, asthma exacerbations, and incomplete symptom control in a more diverse population.
Methods: A matched P2RX7 genetic case-control was performed with samples from Asthma Clinical Research Network trial participants enrolled before July 2006, and P2X7 pore activity was determined in whole blood samples as an ancillary study to two trials completed subsequently.
Measurements and Main Results: A total of 187 exacerbations were studied in 742 subjects, and the change in asthma symptom burden was studied in an additional 110 subjects during a trial of inhaled corticosteroids (ICS) dose optimization. African American carriers of the minor G allele of the rs2230911 loss-of-function single nucleotide polymorphism were more likely to have a history of prednisone use in the previous 12 months, with adjustment for ICS and long-acting β2-agonists use (odds ratio, 2.7; 95% confidence interval, 1.2–6.2; P = 0.018). Despite medium-dose ICS, attenuated pore function predicted earlier exacerbations in incompletely controlled patients with moderate asthma (hazard ratio, 3.2; confidence interval, 1.1–9.3; P = 0.033). After establishing control with low-dose ICS in patients with mild asthma, those with attenuated pore function had more asthma symptoms, rescue albuterol use, and FEV1 reversal (P < 0.001, 0.03, and 0.03, respectively) during the ICS adjustment phase.
Conclusions: P2X7 pore function protects against exacerbations of asthma and loss of control, independent of baseline severity and the maintenance therapy.
PMCID: PMC3570642  PMID: 23144325
asthma; P2X7; exacerbation; Asthma Clinical Research Network; corticosteroids
2.  Alveolar Macrophages from Overweight/Obese Subjects with Asthma Demonstrate a Proinflammatory Phenotype 
Rationale: Obesity is associated with increased prevalence and severity of asthma. Adipose tissue macrophages can contribute to the systemic proinflammatory state associated with obesity. However, it remains unknown whether alveolar macrophages have a unique phenotype in overweight/obese patients with asthma.
Objectives: We hypothesized that leptin levels would be increased in the bronchoalveolar lavage fluid from overweight/obese subjects and, furthermore, that leptin would alter the response of alveolar macrophages to bacterial LPS.
Methods: Forty-two subjects with asthma and 46 healthy control subjects underwent research bronchoscopy. Bronchoalveolar lavage fluid from 66 was analyzed for the level of cellular inflammation, cytokines, and soluble leptin. Cultured primary macrophages from 22 subjects were exposed to LPS, leptin, or leptin plus LPS. Cytokines were measured in the supernatants.
Measurements and Main Results: Leptin levels were increased in overweight/obese subjects, regardless of asthma status (P = 0.013), but were significantly higher in overweight/obese subjects with asthma. Observed levels of tumor necrosis factor-α were highest in overweight/obese subjects with asthma. Ex vivo studies of primary alveolar macrophages indicated that the response to LPS was most robust in alveolar macrophages from overweight/obese subjects with asthma and that preexposure to high-dose leptin enhanced the proinflammatory response. Leptin alone was sufficient to induce production of proinflammatory cytokines from macrophages derived from overweight/obese subjects with asthma.
Conclusions: Ex vivo studies indicate that alveolar macrophages derived from overweight/obese subjects with asthma are uniquely sensitive to leptin. This macrophage phenotype, in the context of higher levels of soluble leptin, may contribute to the pathogenesis of airway disease associated with obesity.
PMCID: PMC3443798  PMID: 22773729
tumor necrosis factor-α; leptin; innate immunity; lipopolysaccharide; environmental lung disease
3.  Airway Fibroblasts in Asthma Manifest an Invasive Phenotype 
Rationale: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key TH2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.
Objectives: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.
Methods: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV1: 90 ± 3.6% pred) and 17 normal control subjects (FEV1: 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.
Measurements and Main Results: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13–induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.
Conclusions: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13–directed airway remodeling in asthma.
PMCID: PMC3136991  PMID: 21471104
airway remodeling; interleukin-13; transforming growth factor-β; matrix metalloproteinase
4.  Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma 
Rationale: Bronchial thermoplasty (BT) is a bronchoscopic procedure in which controlled thermal energy is applied to the airway wall to decrease smooth muscle.
Objectives: To evaluate the effectiveness and safety of BT versus a sham procedure in subjects with severe asthma who remain symptomatic despite treatment with high-dose inhaled corticosteroids and long-acting β2-agonists.
Methods: A total of 288 adult subjects (Intent-to-Treat [ITT]) randomized to BT or sham control underwent three bronchoscopy procedures. Primary outcome was the difference in Asthma Quality of Life Questionnaire (AQLQ) scores from baseline to average of 6, 9, and 12 months (integrated AQLQ). Adverse events and health care use were collected to assess safety. Statistical design and analysis of the primary endpoint was Bayesian. Target posterior probability of superiority (PPS) of BT over sham was 95%, except for the primary endpoint (96.4%).
Measurements and Main Results: The improvement from baseline in the integrated AQLQ score was superior in the BT group compared with sham (BT, 1.35 ± 1.10; sham, 1.16 ± 1.23 [PPS, 96.0% ITT and 97.9% per protocol]). Seventy-nine percent of BT and 64% of sham subjects achieved changes in AQLQ of 0.5 or greater (PPS, 99.6%). Six percent more BT subjects were hospitalized in the treatment period (up to 6 wk after BT). In the posttreatment period (6–52 wk after BT), the BT group experienced fewer severe exacerbations, emergency department (ED) visits, and days missed from work/school compared with the sham group (PPS, 95.5, 99.9, and 99.3%, respectively).
Conclusions: BT in subjects with severe asthma improves asthma-specific quality of life with a reduction in severe exacerbations and healthcare use in the posttreatment period.
Clinical trial registered with (NCT00231114).
PMCID: PMC3269231  PMID: 19815809
asthma; Alair Bronchial Thermoplasty System; bronchial thermoplasty; bronchoscopic procedure; Asthma Quality of Life
5.  S-Nitrosoglutathione Reductase 
Rationale: Nitric oxide bioactivity, mediated through the formation of S-nitrosothiols (SNOs), has a significant effect on bronchomotor tone. S-Nitrosoglutathione is an endogenous bronchodilator that is decreased in children with asthmatic respiratory failure and in adults with asthma undergoing segmental airway challenge. Recently we showed that S-nitrosoglutathione reductase (GSNOR) regulates endogenous SNOs. Mice with genetic deletion of GSNOR are protected from airway hyperresponsivity in an allergic asthma model.
Objectives: We hypothesized that GSNOR is increased in human asthma and correlates with lung SNO content and airway reactivity.
Methods: We recruited 36 subjects with mild asthma with FEV1 88.5 ± 2.3% predicted and 34 healthy control subjects with FEV1 100.7 ± 2.5% predicted. Bronchoalveolar lavage (BAL) was performed in all subjects. Cell counts, differentials, GSNOR activity, and SNO levels were determined in BAL.
Measurements and Main Results: SNO content was decreased in asthmatic BAL compared with control BAL and correlated inversely with GSNOR expression in BAL cell lysates. Furthermore, GSNOR activity measured from BAL samples was significantly increased in subjects with asthma compared with control subjects and correlated inversely with the provocative concentration of methacholine causing a 20% decrease in FEV1.
Conclusions: These findings suggest that GSNOR is an important regulator of airway SNO content and airways hyperresponsiveness in human asthma.
PMCID: PMC2724715  PMID: 19395503
asthma; S-nitrosoglutathione reductase; S-nitrosothiols; airway hyperresponsiveness
6.  Smoking Affects Response to Inhaled Corticosteroids or Leukotriene Receptor Antagonists in Asthma 
Rationale: One-quarter to one-third of individuals with asthma smoke, which may affect response to therapy and contribute to poor asthma control.
Objectives: To determine if the response to an inhaled corticosteroid or a leukotriene receptor antagonist is attenuated in individuals with asthma who smoke.
Methods: In a multicenter, placebo-controlled, double-blind, double-dummy, crossover trial, 44 nonsmokers and 39 light smokers with mild asthma were assigned randomly to treatment twice daily with inhaled beclomethasone and once daily with oral montelukast.
Measurements and Main Results: Primary outcome was change in prebronchodilator FEV1 in smokers versus nonsmokers. Secondary outcomes included peak flow, PC20 methacholine, symptoms, quality of life, and markers of airway inflammation. Despite similar FEV1, bronchodilator response, and sensitivity to methacholine at baseline, subjects with asthma who smoked had significantly more symptoms, worse quality of life, and lower daily peak flow than nonsmokers. Adherence to therapy did not differ significantly between smokers and nonsmokers, or between treatment arms. Beclomethasone significantly reduced sputum eosinophils and eosinophil cationic protein (ECP) in both smokers and nonsmokers, but increased FEV1 (170 ml, p = 0.0003) only in nonsmokers. Montelukast significantly increased a.m. peak flow in smokers (12.6 L/min, p = 0.002), but not in nonsmokers.
Conclusions: In subjects with mild asthma who smoke, the response to inhaled corticosteroids is attenuated, suggesting that adjustments to standard therapy may be required to attain asthma control. The greater improvement seen in some outcomes in smokers treated with montelukast suggests that leukotrienes may be important in this setting. Larger prospective studies are required to determine whether leukotriene modifiers can be recommended for managing asthma in patients who smoke.
PMCID: PMC1899291  PMID: 17204725
antiasthmatic agents; smoking adverse effects; corticosteroids; leukotrienes
7.  Combination Therapy with a Long-Acting β-Agonist and a Leukotriene Antagonist in Moderate Asthma 
Rationale: Long-acting β-agonists (LABAs) and inhaled corticosteroids administered together appear to be complementary in terms of effects on asthma control. The elements of asthma control achieved by LABAs (improved lung function) and leukotriene receptor antagonists (LTRAs; protection against exacerbations) may be complementary as well.
Objective: We sought to determine whether the combination of the LTRA montelukast and the LABA salmeterol could provide an effective therapeutic strategy for asthma.
Methods and Measurements: In a randomized, placebo-controlled, crossover study of 192 subjects with moderate asthma, we compared the clinical efficacy of regular treatment over 14 weeks with the combination of montelukast and salmeterol to that with the combination of beclomethasone and salmeterol in moderate asthma. The primary efficacy outcome was time to treatment failure.
Main Results: Three months after the randomization of the last subject, the Data and Safety Monitoring Board determined that the primary research question had been answered and terminated the trial. The combination of montelukast and salmeterol was inferior to the combination of beclomethasone and salmeterol as judged by protection against asthma treatment failures (p = 0.0008), lung function (26 L/min difference in a.m. peak expiratory flow rate, p = 0.011), asthma control score (0.22 difference in Asthma Control Questionnaire score, p = 0.038), and markers of inflammation and airway reactivity.
Conclusions: Patients with moderate asthma similar to those we studied should not substitute the combination of an LTRA and an LABA for the combination of inhaled corticosteroid and an LABA.
PMCID: PMC1899264  PMID: 16973987
combination therapy; leukotriene; beta-agonists; inhaled corticosteroids
8.  β-Adrenergic Receptor Polymorphisms and Response to Salmeterol 
Rationale: Several studies suggest that patients with asthma who are homozygous for arginine at the 16th position of the β2-adrenergic receptor may not benefit from short-acting β-agonists.
Objectives: We investigated whether such genotype-specific effects occur when patients are treated with long-acting β-agonists and whether such effects are modified by concurrent inhaled corticosteroid (ICS) use.
Methods: We compared salmeterol response in patients with asthma homozygous for arginine at B16 (B16Arg/Arg) with those homozygous for glycine at B16 (B16Gly/Gly) in two separate cohorts. In the first, subjects were randomized to regular therapy with salmeterol while simultaneously discontinuing ICS therapy. In the second, subjects were randomized to regular therapy with salmeterol while continuing concomitant ICS.
Results: In both trials, B16Arg/Arg subjects did not benefit compared with B16Gly/Gly subjects after salmeterol was initiated. In the first cohort, compared with placebo, the addition of salmeterol was associated with a 51.4 L/min lower A.M. peak expiratory flow (PEF; p = 0.005) in B16Arg/Arg subjects(salmeterol, n = 12; placebo, n = 5) as compared with B16Gly/Gly subjects (salmeterol, n = 13; placebo, n = 13). In the second cohort, B16Arg/Arg subjects treated with salmeterol and ICS concurrently (n = 8) had a lower A.M. PEF (36.8 L/min difference, p = 0.048) than B16Gly/Gly subjects (n = 22) treated with the same regimen. In addition, B16 Arg/Arg subjects in the second cohort had lower FEV1 (0.42 L, p = 0.003), increased symptom scores (0.2 units, p = 0.034), and increased albuterol rescue use (0.95 puffs/d, p = 0.004) compared with B16Gly/Gly subjects.
Conclusions: Relative to B16Gly/Gly patients with asthma, B16Arg/Arg patients with asthma may have an impaired therapeutic response to salmeterol in either the absence or presence of concurrent ICS use. Investigation of alternate treatment strategies may benefit this group.
PMCID: PMC2662935  PMID: 16322642
asthma; β-adrenergic receptor; β-agonists; pharmacogenetics; salmeterol
9.  Investigative Bronchoprovocation and Bronchoscopy in Airway Diseases 
Rationale: Basic and clinical research strategies used for many lung diseases have depended on volunteer subjects undergoing bronchoscopy to establish access to the airways to collect biological specimens and tissue, perhaps with added bronchoprovocation in asthma syndromes. These procedures have yielded a wealth of important scientific information. Since the last critical review more than a decade ago, some of the techniques and applications have changed, and untoward events have occurred, raising safety concerns and increasing institutional review scrutiny.
Objectives and Methods: To reappraise these investigational methods in the context of current knowledge, the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health convened a working group to review these procedures used for airway disease research, emphasizing asthma and chronic obstructive pulmonary disease.
Main Results: The group reaffirmed the scientific importance of investigative bronchoscopy and bronchoprovocation, even as less invasive technologies evolve. The group also considered the safety of bronchoscopy and bronchoprovocation with methacholine and antigen to be acceptable for volunteer subjects and patients, but stressed the need to monitor this closely and to emphasize proper training of participating medical research personnel. Issues were raised about vulnerable volunteers, especially children who need surrogates for informed consent.
Conclusion: This review of investigative bronchoscopy and bronchoprovocation could serve as the basis for future guidelines for the use of these procedures in the United States.
PMCID: PMC2718402  PMID: 16020805
airway hyperresponsiveness; asthma; bronchoalveolar lavage; chronic obstructive pulmonary disease; lidocaine; methacholine; segmental allergen challenge

Results 1-9 (9)